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For chemists, quantum mechanics consists to a large
extent in solving Schrödinger’s equation in its position rep-
resentation for a wide variety of problems of varying com-
plexity. This activity yields quantized energy levels and
their associated wave functions, Ψ (q), where q represents
the position coordinates (x, y, z), (r, θ, φ), etc. Once obtained,
Ψ (q) can be used to examine the probability distribution in
position space or to calculate the expectation value of some
observable property such as momentum. Though not as fa-
miliar to chemists, an equivalent form of Schrödinger’s
equation in momentum space also exists (1). Solving this
equation yields the momentum-space wave function, Φ (p),
which can be used to examine the probability distribution
in momentum space or calculate the expectation value of
some observable property such as position. In other words,
Ψ (q) and Φ (p) are equivalent representations of the system
under study.

However, for most cases the momentum version of
Schrödinger’s equation is significantly more difficult to
solve than its position-space counterpart. Because of the
equivalency of the position and momentum representations
of Schrödinger’s equation,Ψ (q) and Φ (p) are related by the
Fourier transformation given in atomic units for a one-di-
mensional problem in eq 1 (1).

    Φ (p) = 1
2π

e{ipx Ψ (x) dx (1)

Therefore, when the momentum wave function is required
it is generally found by a Fourier transform of the more eas-
ily obtainable position wave function.

Recently Liang et al. (2) discussed the importance of
the momentum representation of the wave function and
demonstrated how to transform the spatial wave function
for the particle in the box into momentum space using ana-
lytical methods. Prior to this work the subject of the mo-
mentum wave function for the particle in the box was given
a brief treatment by Markley (3) in the physics literature.
There have also been several discussions of the momentum-
space wave functions for the hydrogen atom (4, 5). The pur-
pose of this note is to expand on these presentations by
showing that momentum-space wave functions can be ob-
tained quite easily and economically using numerical tech-
niques and widely available computer software. The pro-
gram employed in this presentation is Mathcad and ver-
sions 3.x or higher can be used.

Figure 1 shows how the momentum-space wave func-
tion is obtained numerically for the n = 3 state for a par-
ticle in a 1 Bohr box using Mathcad. The Fourier transform
is typed, then evaluated numerically for a range of momen-
tum values, and displayed graphically. The result illustrated
in Figure 1 is identical to that shown in ref 2.

Numerical solutions have two major attractive fea-
tures: they are relatively easy to obtain, as Figure 1 illus-
trates, and it is very easy to move from one problem to the
next. This is demonstrated in Figure 2, where the same
Mathcad template has been edited to handle the harmonic
oscillator problem. As Pauling and Wilson (6) noted in their
classic text, and as Figure 2 shows, the momentum and
space wave functions are the same for the simple harmonic
oscillator. This is because the momentum operator in posi-
tion space is { i (d /dx), whereas the position operator in mo-

Figure 2. Momentum distribution function for the ground state of
the harmonic oscillator.

Figure 1. Momentum distribution function for the n = 3 state of a
particle in the box.

Define i: i =  √—
{1

Specify the quantum number and box length: n = 3   a = 1
Define range for momentum: p = {40, {39.9..40

  Φ(p) = 1
2π

2
a0

a
sin n⋅π⋅x

a exp – i⋅p⋅x dx

Display wave function in momentum space:

Fourier trans-
form (in
atomic units)

Define i: i =  √—
{1

Set the limits of integration: a = 6
Define range for momentum: p = {7, {6.95..7

    
Φ(p) = 1

2π
1
π

1/4
⋅ exp { x2

2
⋅ exp ({ i⋅p⋅x) dx

{a

a

Display wave function in momentum space:

Fourier trans-
form (in
atomic units)
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mentum space is i (d /dp). Using the usual methods to con-
vert the classical expression for the harmonic oscillator en-
ergy into Schrödinger’s equation in position and momentum
space yields eqs 2 and 3, respectively. Thus, for the harmonic
potentials in one dimension, Schrödinger’s equation is just
as easy to solve in momentum space as in position space.

     Ψ′′(x) = 2µ 1
2

kx2 – E Ψ (x) (2)

   
Φ′′(p) = 2

k
p2

2µ – E Φ (p) (3)

A striking exploitation of this symmetry for harmonic
potentials was reported recently by Anderson et al. (7).
These researchers created a Bose–Einstein condensate (the
first direct experimental confirmation of a state predicted
by Einstein in 1925) of several thousand rubidium atoms
confined to the ground state of a three-dimensional har-
monic potential well. In such a condensate the rubidium at-
oms are all in the same quantum state and as such repre-
sent the material equivalent of a laser. Anderson and co-
workers used spectroscopic measurements on the expanded
condensate to obtain the velocity (and momentum, p = m v)
distribution of the original condensate. Owing to the posi-
tion/momentum symmetry mentioned above, this is equiva-
lent to the spatial distribution. Thus, a single spectroscopic
measurement provides both the momentum and position
wave functions of the Bose–Einstein condensate.

In the examples discussed so far, the momentum wave
function is found by a numerical Fourier transform of the
analytical form of the position wave function. However,
there are many examples for which analytical solutions are
unavailable or very difficult to obtain. Figures 3a and 3b
show how the position wave function for the particle in the
box with internal barrier is obtained by numerical integra-
tion of Schrödinger’s equation (8) and then transformed nu-
merically into a momentum-space wave function. This
Mathcad document can serve as a template for any one-di-
mensional problem and is especially useful for those that
require a numerical solution for Schrödinger’s equation.

In summary it can be stated that the preference for the
position or momentum formulation of quantum mechanics
is guided by the uncertainty principle. Because chemistry
deals with the behavior of the valence electrons of discrete
atomic and molecular species whose electrons are localized
in space (small ∆q, large ∆p), chemists are mainly interested
in Ψ(q). Among the accomplishments of solid state physics
is the elucidation of the electronic structure of metals (9).
In the most elementary theory of metals the electrons are
essentially completely delocalized (large ∆q, small ∆p) and
the organizing principles are the Fermi surface and the mo-
mentum space wave function, Φ(p).
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Figure 3a. Numerical solution for the particle in a box with internal
barrier.

Set parameters:
Grid: n = 300     Mass: µ = 1     Barrier height: Vo = 100
Left boundary: lb = .45     Right boundary: rb = .55

Integration limits: xmin = 0     xmax = 1       ∆ = xmax – xmin
n

Initial values for wave function:     Ψ0 = 0     Ψ1 = .001

Calculate potential energy:
i = 0..n    xi = xmin + i·∆    Vi = if[(xi ≥ lb)·(xi ≤ rb), Vo, 0]    fi = 2µ(Vi – energy)

   

Ψi =

2⋅Ψi{1 – Ψ i{2 + ∆ 2

12
⋅ f i{2⋅Ψi{2 + 10 ⋅ f i{1 ⋅ Ψi{1

1 – f i ⋅ ∆ 2

12

Make energy Guess:     energy = 15.64

Display wave function and potential barrier:     i = 0..n

Integration
Algorithm:

i = 2, 3..n

Figure 3b. Momentum distribution function for the particle in a box with
internal barrier.

Transform the coordinate-space wave function to the momentum-
space wave function.
Define i: i =  √—

{1     Define range for momentum:  p = {20, {19.1..20

   Φ(p) = 1
n ⋅ Ψj ⋅ exp {i ⋅ p ⋅ x jΣ

j = 0

n

Display wave function:

Evaluate Fourier transform
numerically:


