
 3

SAND2003-1899
Unlimited Release

Updated April 2008

Trilinos Developers Guide
Part II: ASC Software Quality Engineering

Practices
Version 2.0

Michael A. Heroux, James M. Willenbring, Robert T. Heaphy

Scalable Algorithms Department
Sandia National Laboratories

P.O. Box 5800
Albuquerque, New Mexico 87185

Abstract

The Trilinos Project is an effort to facilitate the design, development, integration and
ongoing support of numerical software libraries, primarily focused on solvers. A new
software capability is introduced into Trilinos as a package. A Trilinos package is an
integral unit and, although there are exceptions such as utility packages, each package is
typically developed by a small team of experts in a particular algorithms area such as
algebraic preconditioners, nonlinear solvers, etc.

The Trilinos Developers Guide Part II is a resource for Trilinos package developers who
are working under Advanced Simulation and Computing (ASC) and are therefore subject
to the ASC Software Quality Engineering Practices as described in the Sandia National
Laboratories Advanced Simulation and Computing (ASC) Software Quality Plan Part 1:
ASC Software Quality Engineering Practices Version 1.0 document [1]. The Trilinos
Developers Guide [2] is a companion document to this second part and contains much of
the detailed information that is essential for all Trilinos developers. The Trilinos
Software Lifecycle Model [3] defines the default lifecycle model for Trilinos packages
and provides a context for many of the practices listed in this document.

 4

Intentionally Left Blank

 5

1. Introduction

One objective of Advanced Simulation and Computing (ASC) is to develop professional
software quality engineering (SQE) practices that will ensure the quality of software
developed with ASC funding. To this end, the Sandia National Laboratories Advanced
Simulation and Computing (ASC) Software Quality Plan Part 1: ASC Software Quality
Engineering Practices Version 1.0 document [1], lists 30 practices that should be
addressed by ASC software developers. Part II of the Trilinos Developers Guide
addresses each of the 30 practices, often referring to the main Trilinos Developers Guide
[2] except for issues that are unique to ASCI SQE practices. Although all Trilinos
developers are encouraged to adopt these ASC practices, developers are only required to
do so when working on ASC funded capabilities. Each of the 30 practices is discussed in
terms of the responsibilities of the Trilinos Framework and each individual Trilinos
Package. As can be seen from the table in Section 3, the Trilinos Framework provides a
valuable service to the Trilinos Packages, providing package developers with ready-made
support for many of the 30 practices, leaving to package developers only those practices
that should be under the direction of each package team. In fact, eleven of the practices
are the sole responsibility of the framework and the framework provides significant
support for the remaining nineteen practices.

2. Roles, Documents, Tools and Events

The primary content of this document is a large table in Section 3, listing and discussing
each of the 30 ASC SQE practices. Throughout the discussion, a number of roles
(people), documents, tools and events are cited frequently. We list each of them here and
assign acronyms where appropriate:

Roles:

• ASC Program Management: The ASC program (which includes ASC
Algorithms) has an evolving set of processes for SQE. Many of the SQE
processes in the Project Planning, Tracking, and Oversight, Risk Management,
and Determination of Applicable Practices and level of Formality phases are
driven by decisions made by ASC Program Management.

• ASC Algorithms Program Element Lead and PI: The Trilinos Project receives
a significant portion of its funding from the Algorithms portion of the ASC
Program. As a result, the ASC Algorithms Program Element Lead and PI play an
important role in the Project Planning, Tracking, and Oversight, Risk
Management, and Determination of Applicable Practices and level of Formality,
following the guidelines and requirements established by ASC Program
Management.

• Trilinos Project Leader: A fundamental management principal of the Trilinos
Project is that packages should be as autonomous as possible, recognizing that
local control with careful attention to interfaces is often the most effective

 6

approach to producing high quality software. At the same time there is a need for
a single focal point in some situations. The Trilinos Project leader is the primary
focal point for major project decisions. The duties of this person include:

1. Arbitrating in cases where a consensus decision cannot be reached as part
of inter-package decisions.

2. Organizing Trilinos project events (see below).
3. Managing and tracking progress on the Trilinos Framework

Responsibilities as described in Section 3.
• Trilinos Release Manager: The Trilinos Release Manager is responsible for

tagging and branching the repository and generally coordinating the release
process.

• Trilinos Capability Leaders: Because of the broad scope of Trilinos, we have
leaders assigned to the following capability areas:

1. Framework, Tools & Interfaces.
2. Discretizations.
3. Geometry, Meshing & Load Balancing.
4. Scalable Linear Algebra.
5. Linear & Eigen Solvers.
6. Nonlinear, Transient & Optimization Solvers.

These leaders have responsibilities across packages and are responsible for
strategic planning for Trilinos in their areas.

• Package Leader: Each Trilinos package has one or more leaders. These leaders
are responsible for managing and tracking package responsibilities as described in
Section 3. These leaders are also responsible for attending the Monthly Trilinos
Leaders Meetings, representing the package development team and disseminating
information to the team. Only leaders of packages funded by ASC are responsible
for all of the practices listed in Section 3.

• Package Developer: Each package has an identifiable group of developers. Any
given individual may be a member of multiple package development teams.

• Framework Developer: The Trilinos Framework also has an identifiable group
of developers. These individuals may also be members of package development
teams.

Documents:

• Trilinos Developer Guide (TDG): Primary development guide for Trilinos
developers. Discusses software requirements that apply to all Trilinos developers
and presents the suggested practices for each requirement. This guide also
describes the services available to packages that are part of Trilinos [2].

• Trilinos Software Lifecycle Model: Defines a 3-phase promotional lifecycle
model that recognizes the changing requirements for Trilinos capabilities as work
goes from proof-of-concept to production quality. The three phases are research,
production growth, and production maintenance. To transition from one phase to
the next, a promotional event must be completed. Most often, packages transition
from phase to phase as a whole, but the model also allows for different

 7

capabilities within packages to be in different phases, provided certain conditions
are met [3].

• Trilinos Strategic Plan (TSP): Lists the strategic goals of the project and
provides pointers to other important information, such as a list of ASC
stakeholders and project capabilities [4].

• Trilinos Project Plan (TPP): Each fiscal year the ASC Algorithms team gathers
user and software requirements from ASC application teams and its own
members. The exact form and number of documents generated has changed from
year to year, as the ASC program itself defines its processes for software quality.
Currently the TPP is called the Objectives and Resource plan for ASC Algorithms
R&D [5]. In past years we have provided all analysis and documentation request
by ASC program managers, and have developed additional documents that
provide greater detail than what ASC requires. As ASC program practices
evolve, we will continue to adapt our documents and processes to match,
especially in the Requirements, Project Planning, Tracking and Oversight and
Risk Management phases. Although the type and number of documents required
by the ASC program has and will continue to change, for simplicity we refer to
entire collection of these documents and related documents that provide greater
detail as the Trilinos Project Plan. In the recent past, the primary documents have
been the ASC Algorithms Implementation Plan and the ASC Algorithms
Objectives and Resource Plan.

• ASC Algorithms Quarterly Report (AAQR): At the end of each quarter, when
requested by ASC program management, the ASC Algorithms team will generate
a progress report and list adjusted milestones as needed.

• Package Specific Documentation (PSD): In the
Package Responsibilities column we discuss in
detail how a package should satisfy a particular
practice. However, it is always the case that a
package may satisfy any given practice via its
own process as long as the alternate process is
documented in the appropriate Package Specific
Document. For example, if Package X adopts a
lifecycle that is different than The Trilinos
Software Lifecycle Model, the alternative
lifecycle model should be documented.

Tools:

• Concurrent Versions Systems (CVS): All Trilinos source code and documents
are maintained using CVS [6]. The primary CVS repository resides on the
Trilinos Development platform “software.sandia.gov” on the Sandia Open
Network (SON). Sensitive documents are retained under a separate repository on
the Sandia Restricted Network (SRN). Use of CVS is documented in the TDG.

• Bugzilla: All major features and software faults are reported using Bugzilla [7], a
web-based issue-tracking package. Each Trilinos package, the Trilinos

Key point: It is
always the case that a
package may satisfy
any given practice via
its own process as long
as the alternate process
is documented in the
appropriate Package
Specific Document.

 8

framework and Bugzilla itself are set up as Bugzilla products. Bugzilla is
available at http://software.sandia.gov/bugzilla. Use of Bugzilla is documented in
the TDG. Note that the processes for reporting bugs, tracking issues, and
requesting enhancements are built directly into Bugzilla.

• Mailman: Each Trilinos package has a set of Mailman [8] mail lists to support
communication and archiving of important information and artifacts. List
descriptions are documented in the TDG.

• Doxygen: Many Trilinos packages use the documentation-generating package
called Doxygen [9]. Doxygen processes source code comments producing
detailed online and printed documentation of the processed source. Although it
can be used with many languages and is highly configurable, the most common
use of it within Trilinos is to process header files containing description of C++
classes and detailed documentation of the major user-callable methods in each
class. Doxygen also extracts information about class interactions and
dependencies. Most Trilinos packages presently use Doxygen to provide user
reference documentation.

• Autoconf and Automake: Trilinos configuration and building is facilitated by
using Autoconf [10] and Automake [11], collectively referred to as Autotools
[12]. These tools facilitate dynamic configuration and building of Trilinos across
a broad set of computer platforms. Via runtime compilation and linking tests,
queries to the operating system and user-specified parameters, Trilinos can be
configured and built on almost any platform with minimal user knowledge of
details such as location of system libraries and compilers. The autotools build
system also supports installation of Trilinos for multiple users and automatic
creation of distribution tar files.

• software.sandia.gov: The primary Trilinos development platform is a Linux
server called software.sandia.gov. This platform supports all of the tools listed
above, contains the Trilinos CVS repository and all of the Mailman and Bugzilla
archives. This platform is on the Sandia Open Network (SON), so it is accessible
from any internet-connect machine. The file systems on this platform are backed
up daily. Backup tapes are shipped offsite monthly.

• trilinos.sandia.gov: The primary user-oriented website, containing most user
documentation and download instructions.

• Microsoft Project: The Trilinos project leader uses Microsoft Project [13], a
project management and tracking tool, to track and communicate major Trilinos
deliverables.

• Trilinos Process Checklists: The Trilinos project team has a number of
processes defined via process checklists. A list of current and past process
checklists is available on the Trilinos developer website [14]. Completed
checklists related to releases and CVS commits are stored in Bugzilla, either in
the body of the bug, or as an attachment. Once a process is started, it can be
completed using the version of the process checklist that was current at the time
the process was initiated, unless otherwise requested by the Trilinos Project
Leader [14].

• Trilinos Test Harness: A suite of utilities that combine to automatically
configure, compile, and test Trilinos packages on a range of important/interesting

 9

test machines. The results are then reported to a central database where they can
be viewed online [15].

Events:

• Monthly Trilinos Leaders Meeting: Package leaders for Trilinos packages,
Trilinos management and other stakeholders participate in a monthly leadership
meeting. Meeting minutes are sent to the Trilinos-Leaders@software.sandia.gov
mail list for communication and archiving. Meeting topics include discussion of
requirements, design, implementation, testing and documentation. We also
conduct developer training as needed during these meetings. A request for
agenda items and a meeting agenda is sent to the Trilinos-Leaders mail list prior
to each meeting.

• Quarterly Trilinos Advisors Meeting: Many Trilinos customers and a subset of
the Trilinos Leaders group participate in a quarterly Trilinos Advisory Group
meeting. These meetings give Trilinos developers the change to pass important
information on to users and give users the opportunity to directly share concerns
and suggestions with developers. Customer training can also take place at these
meetings. Meeting minutes are sent to the Trilinos-
Advisors@software.sandia.gov mail list for communication and archiving. A
request for agenda items and a meeting agenda is sent to the Trilinos-Advisors
mail list prior to each meeting.

• Quarterly Trilinos Capability Leaders Meeting: The Trilinos Capability
Leaders meet quarterly to discuss high level Trilinos issues including the general
direction of the project. Meeting minutes are sent to the Trilinos-
Board@software.sandia.gov mail list for communication and archiving. A
request for agenda items and a meeting agenda is sent to the Trilinos-Board mail
list prior to each meeting.

• Annual Trilinos User Group Meeting: Approximately once a year we hold a
meeting for Trilinos users. During this meeting we present an overview of
Trilinos, and detailed presentations of Trilinos packages. The fourth annual
meeting was held in November, 2006.

3. Trilinos Practices Table

The remainder of this document is a table that follows, item
by item, the 30 practices listed in the ASC Software Quality
Engineering Practices document. For each practice, the
responsibilities of the Trilinos Framework and each Trilinos
Package are described using present-tense phrasing. Please
note that some of these responsibilities are not fully
addressed at this time, in which case this document serves as
a plan rather than a statement of practice.

Key point: … some of
these responsibilities are
not fully addressed at this
time, in which case this
document serves as a plan
rather than a statement of
practice.

 10

Practice
Trilinos Framework

Responsibilities
Trilinos Package
Responsibilities

Project
Management

1. Strategic Planning

PR1. Document and
maintain a strategic
plan.

The Trilinos Strategic Plan [4] is
maintained at the Trilinos project level
with input from packages.

Provide input for the Trilinos Strategic Plan
as appropriate.

2. Determination of
Applicable
Practices and
Level of Formality

PR2. Perform a risk-based
assessment,
determine level of
formality and
applicable practices,
and obtain approvals.

Trilinos project level risk identification
and mitigation is included in the TPP and
AAQR, when and as requested by ASC
program management. An ASC risk-
based assessment has been completed and
approved.

For packages in the Research phase the
associated technical risk cannot be
mitigated by a high level of formality, so by
default these packages follow a low level of
formality (LOF). During the promotional
events defined by The Trilinos Software
Lifecycle Model, risk identification is
required. By default, the LOF at the
Production Growth phase is medium. At the
Production Maintenance phase, the default
LOF is high.

3. Process
Implementation
and Improvement

PR3. Document lifecycle
processes and their
interdependencies,
and obtain approvals.

The Trilinos Software Lifecycle Model
defines the lifecycle for a Trilinos
package.

None.

PR4. Define, collect, and
monitor appropriate
process metrics.

Trilinos process checklists [14] require
and recommend the collection of a
number of project metrics. Other metrics,
such as build and test failures and
coverage rates are automatically collected
using the Trilinos Test Harness and its
web interface [15]. Certain metrics, such
as build failures, are monitored
frequently. There is an ongoing effort to
define new metrics for the project.

Package level process checklists require that
certain metrics are gathered by package
development teams in the Production
Growth and Production Maintenance
phases.

PR5. Periodically
evaluate quality
problems and
implement process
improvements.

Many process checklists use Plan, Do,
Check, Act, which provides built in
process improvement. Other checklists
are reviewed periodically and improved
upon.

Package level process checklists utilize
process improvement in the same way as
Framework level process checklists.
Metrics are made available to package
development teams to allow them to make
package level process improvements.

4. Requirements
Engineering

 11

Practice

Trilinos Framework
Responsibilities

Trilinos Package
Responsibilities

PR6. Identify
stakeholders and
other requirements
sources.

The Trilinos Strategic Plan [4] identifies
Trilinos stakeholders.

None.

PR7. Gather and manage
stakeholders’
expectations and
requirements.

Primary user requirements are gathered
and documented in the TPP. In addition,
topics discussed during the monthly
Trilinos Leader’s meeting include
Trilinos user requirements. Meeting
minutes are archived on the trilinos-
leaders@software.sandia.gov mail list.

None.

PR8. Derive, negotiate,
manage, and trace
requirements.

The TPP covers the derivation,
negotiation, management, and tracing of
requirements. The AAQR documents the
managing and tracing of and the success
in meeting requirements.

None.

5. Risk Management
PR9. Identify and analyze

risk events.

Risk identification and analysis is
included in the TPP and AAQR, when
and as requested by ASC program
management.

During the promotional events defined by
The Trilinos Software Lifecycle Model, risk
identification is required.

PR10. Define, monitor,
and implement the
risk response.

Risk mitigation and response is included
in the TPP and AAQR, when and as
requested by ASC program management.

Provide quarterly updates to the ASC
Algorithms PI.

6. Project Planning,
Tracking and
Oversight

PR11. Create and manage
the project plan.

The TPP is maintained at the project
level.

None.

PR12. Track performance
versus project plan
and implement
needed (corrective)
actions.

The AAQR is written and submitted
quarterly, when requested by ASC
program management.

None.

 Software
Engineering

7. Software
Development

 12

Practice

Trilinos Framework
Responsibilities

Trilinos Package
Responsibilities

PR13. Communicate and
review design.

Doxygen [9], user mail lists and
developer mail lists are provided on the
Trilinos development platform
software.sandia.gov. Trilinos Framework
level design discussions occur at Trilinos
Framework Developer meetings and on
the trilinos-framework mail list. Meeting
minutes are also sent to the trilinos-
framework mail list. All mail list traffic
is subject to peer review.

This practice is addressed by the lifecycle
model. Briefly, design at research phase is
typically captured in a notebook or on a
mail list. During the production growth
phase, the design is often communicated
and reviewed during face to face or phone
meetings (and minutes are sent to a mail
list), or on a developer mail list. During the
production maintenance phase, formal
documentation and review of design will
occur.

In all phases design is also captured in the
form of Doxygen documentation. In most
cases, the Doxygen documentation
represents a true design as it is produced
before the associated code is written.

PR14. Create required
software and product
documentation.

A CVS repository is provided for all code
and artifacts. Doxygen [9] is provided on
the Trilinos development platform
software.sandia.gov.

Packages follow the adopted lifecycle for
software development.

8. Integration of
Third Party or
Other Software

PR15. Identify and track
third party software
products and follow
applicable
agreements.

Supported versions of third-party
software can be kept in the Trilinos3PL
CVS repository. Third-party software
that is widely available and adheres to
established standards such as BLAS,
LAPACK, and MPI are not kept under
version control. Trilinos supports a wide
array of versions and vendors of these
common libraries that adhere to the
appropriate standard.

Check new supported versions of 3PL’s into
the Trilinos3PL repository and/or document
supported versions. Follow all applicable
license agreements.

PR16. Identify, accept
ownership, and
manage assimilation
of other software
products.

Trilinos packages do not generally accept
ownership of third-party software. If a
package team chooses to do so, they have
the option to use the Trilinos or
Trilinos3PL repository to store the code.

Follow all applicable license agreements.
Assimilated code should be maintained like
core package code.

9. Configuration
Management

PR17. Perform version
control of identified
software product
artifacts.

A CVS repository is maintained for all
Trilinos packages. Package-checkins
mail lists archive all product
modifications. Trilinos release versioning
is handled by release and release update
process checklists [14].

Package developers utilize the Trilinos CVS
repository.

 13

Practice

Trilinos Framework
Responsibilities

Trilinos Package
Responsibilities

PR18. Record and track
issues associated with
the software product.

A Bugzilla product is provided for each
Trilinos package. All issues are tracked
via Bugzilla and the underlying MySQL
[16] database.

Package developers, or their customers, file
issue reports using the Trilinos Bugzilla
site. This includes major feature requests
and software problems. Issue reports are
kept up-to-date.

PR19. Ensure backup and
disaster recovery of
software product
artifacts.

The Trilinos development platform,
software.sandia.gov is backed up
regularly and backup tapes are shipped
offsite. All CVS, Mailman, and Bugzilla
data and artifacts are retained indefinitely.

None.

10. Release and
Distribution
Management

PR20. Plan and generate
the release.

Release requests are negotiated between
the Trilinos Project Leader and
customers. A release cycle commences
when an announcement of a release target
date is sent to the Trilinos-developers
mail list. This email describes the release
plans, or the plan is discussed as part of
the monthly Trilinos Leaders Meeting.
Part of the Trilinos Level Release Process
Checklist and Trilinos Web Release
Process Checklist address release
generation.

Part of the Trilinos Package Level Release
Process Checklist addresses release
generation. All packages that are included
in a major release are required to complete
this checklist.

PR21. Certify that the
software product
(code and its related
artifacts) is ready for
release and
distribution.

Part of the Trilinos Level Release Process
Checklist and Trilinos Web Release
Process Checklist address release
certification. Part of the required
certification is provided by major
customers.

Part of the Trilinos Package Level Release
Process Checklist addresses release
certification.

PR22. Distribute release
to customers.

Part of the Trilinos Level Release Process
Checklist, Release Update Checklist, and
Trilinos Web Release Process Checklist
address release distribution.

None.

11. Customer Support
PR23. Define and

implement a customer
support plan.

Customer support is addressed in the
TPP, and the Trilinos Strategic Plan [4].
Frequent communication, the Trilinos
User Group meeting, the Trilinos User
Guide, Trilinos Tutorial, any existing
package user guides, Bugzilla, the
lifecycle level of formality, the trilinos-
help and trilinos-user mail lists, and the
list of developer contacts available online
are all important components of Trilinos
customer support.

Responsible for providing customer support
at the package level.

 14

Practice

Trilinos Framework
Responsibilities

Trilinos Package
Responsibilities

PR24. Implement the
training identified in
the customer support
plan.

Organize the annual Trilinos User Group
meeting. Maintain the Trilinos User
Guide and Trilinos Tutorial.

Create and maintain package
documentation. Provide tutorials at the
Trilinos User Group meeting as appropriate.

PR25. Evaluate customer
feedback to determine
customer satisfaction.

Users provide feedback at Trilinos
Advisory Group meetings and via email,
issue reports, and conversations
throughout the year. They are also
invited to TUG where users are given the
chance to provide feedback. In addition,
at least one user is invited to give a
presentation at TUG that often includes
comments on their level of satisfaction
and opportunities for improvement.
Occasionally, customer surveys are
conducted.

Respond promptly to user issues. Package
specific surveys can be conducted, when
appropriate.

Software Verification

12. Software
Verification

PR26. Develop and
maintain a software
verification plan.

The Trilinos software verification plan is
included in the TPP. The Trilinos
Developer Guide and the Trilinos website
include documentation for and a
discussion of the Trilinos Test Harness to
assist developers in setting up package
testing.

None.

PR27. Conduct tests to
demonstrate that
acceptance criteria
are met and to ensure
that previously tested
capabilities continue
to perform as
expected.

The results from nightly test cases are
automatically mailed to the appropriate
package-regression@software.sandia.gov
mail list. The results are archived. The
completion of acceptance tests that are
run by users before a release are also
archived via the trilinos-
framework@software.sandia.gov and/or
the trilinos-
developers@software.sandia.gov mail
list. Release testing is addressed by part
of the Trilinos Level Release Process
Checklist.

Package developers are responsible for
deciding what tests need to be written for
their packages. Part of the Trilinos Package
Level Release Process Checklist addresses
testing that must be completed prior to a
release.

PR28. Conduct
independent technical
reviews to evaluate
adequacy with respect
to requirements.

Framework list discussions and peer
reviews occur as appropriate. Feedback
on the adequacy of existing and new
framework components is gathered at
TUG and Trilinos Monthly Leaders
meetings.

The formality of technical reviews depends
on which phase of the lifecycle model
package is in. During the research phase,
this often means publishing results. During
the production maintenance phase, formal
inspections occur as appropriate. During
the production growth phase publications
are produced and/or inspections occur as
appropriate.

Training

 15

Practice

Trilinos Framework
Responsibilities

Trilinos Package
Responsibilities

13. Training

PR29. Determine project
team training needed
to fulfill assigned
roles and
responsibilities.

Training is performed as needed during
the monthly Trilinos Leaders Meeting.
Training events are announced on the
meeting agenda that is sent to the trilinos-
leaders mail list prior to the meeting.
Package leaders or designated
representatives are expected to attend.
Other training events, such as the
Software Engineering Seminar Series, are
announced on the trilinos-developers mail
list. Training, based on the needs
determined by the Trilinos Project
Leader, is also frequently provided during
developer day at the Trilinos User Group
meeting.

None.

PR30. Track training
undertaken by project
team.

Training is tracked by checking
attendance lists into the TrilinosSQE CVS
repository, or via meeting minutes sent to
the appropriate mail list.

None.

 16

References

[1] Edward A. Boucheron, Richard R. Drake, H. Carter Edwards, Molly A. Ellis,
Christi A. Forsythe, Robert Heaphy, Ann L. Hodges, Constantine Pavlakos,
Joseph R. Schofield, Judy E. Sturtevant and C. Michael Williamson, Sandia National
Laboratories Advanced Simulation and Computing (ASC) Software Quality Plan Part 1:
ASC Software Quality Engineering Practices, Version 1.0, Sandia National Laboratories,
SAND2004-6602, January 2005.

[2] M. Heroux, J. Willenbring and R. Heaphy, The Trilinos Developers Guide, Version
1.0, Sandia National Laboratories, SAND2003-1898, May 2003.

[3] J. Willenbring, R. Heaphy, M. Heroux and M. Phenow, The Trilinos Software
Lifecycle Model, Sandia National Laboratories, SAND2006-6929, November 2006.

[4] M. Heroux, J. Willenbring and R. Heaphy, Trilinos Project Strategic Plan, Sandia
National Laboratories, SAND2008-XXXX, January 2008.

[5] S. Collis, Objectives and Resource plan for ASC Algorithms R&D, Version 2.1,
10/05/2006.

[6] Gnu CVS Home Page: http://www.gnu.org/software/cvs.

[7] Mozilla Bugzilla Home Page: http://www.mozilla.org/projects/bugzilla.

[8] Mailman Home Page: http://www.gnu.org/software/mailman.

[9] Doxygen Home Page: http://www.doxygen.org.

[10] Autoconf Home Page: http://www.gnu.org/software/autoconf.

[11] Automake Home Page: http://www.gnu.org/software/automake.

[12] G. Vaughan, B. Elliston, T. Tromey, and I. Taylor. GNU Autoconf, Automake and
Libtool.New Riders, 2000.

[13] Microsoft Project Home Page: http://www.microsoft.com/office/project.

[14] Trilinos Process Checklists:
http://software.sandia.gov/trilinos/developer/sqp/checklists/index.html.

[15] Trilinos Test Harness Results:
http://software.sandia.gov/trilinos/developer/test_harness/results/index.html.

[16] MySQL Home Page: http://www.mysql.com.

