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What is Co-Array Fortran?

- Co-Array Fortran is one of three simple language
extensions to support explicit parallel programming.

— Co-Array Fortran (CAF) Minnesota

— Unified Parallel C (UPC) GWU-Berkeley-NSA-
Michigan Tech

— Titanium (extension to Java) Berkeley
Recent additions that are not simple extensions
— Chapel from Cray

— X10 from IBM
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Programming Models

« Libraries
— MPI, Shmem, ScaLAPACK, Trilinos, ...

- Language extensions
— CAF, UPC, Titanium, Intel Ct, Microsoft C#...

- Language directives
— HPF, OpenMP, ...

* New languages
— X10, Chapel, ...
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Arguments about Programming Models

Libraries are more portable than language extensions but may
not be very flexible.

Language extensions allow compilers to optimize for specific
hardware capabilities but they may not do it well.

- Language directives work well for loop-level parallelism and for
simple data decomposition but not for more complicated things.

- New languages allow for higher levels of abstraction, but they
are far removed from hardware and people won’t adopt them
quickly.

- The significant differences between models usually comes down
to three questions:

— Does the model use a global view of data or a local view of data?

— Does the model assume a single thread of control or multiple
threads of control?

— How is the affinity between data and work defined?
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The Guiding Principle for the Co-Array Model

- What is the smallest change required to make
Fortran an effective parallel language?

« How can this change be expressed so that it is
intuitive and natural for Fortran programmers?

- How can it be expressed so that existing compiler
technology can implement it easily and efficiently?
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The Co-Array Programming Model

- Single-Program-Multiple-Data (SPMD)
— A program is replicated a fixed number of times.
— Each replication is called an image.

— The run-time system assigns a physical
processor to perform work on the data
associated with an image.

- Images execute asynchronously except where
explicit synchronization is inserted in the code.
— All data is local
— All computation is local
— One-sided communication thru co-dimensions
*  Programmer is responsible for
— Explicit data decomposition
— Explicit synchronization
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Co-Array Fortran Execution Model

The number of images is fixed and each image has its own index,
retrievable at run-time:

1 < num_images()
1 < this_image() < num_images()
Each image executes the same program independently of the others.

The programmer inserts explicit synchronization and branching as
needed.

An “object” has the same name in each image.
Each image works on its own local data.

An image moves remote data to local data through, and only
through, explicit co-array syntax.
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What is Co-Array Syntax?

- Co-Array syntax is a simple parallel extension to normal
Fortran syntax.
— It uses normal rounded brackets ( ) to point to data in local memory.
— It uses square brackets [ | to point to data in remote memory.
— Syntactic and semantic rules apply separately but equally to () and [ |.
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Declaration of a Co-Array

real :: x(n)[*]
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Co-Array Memory Model

1 P q *
x(1) x(1) x(1) | x(1)[q] ] x(1) x(1)
x(n) x(n) x(n) (@) x(n) Xln)
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Examples of Co-Array Declarations

real :: a(n)[*]

complex :: z[(0:]

integer :: index(n)|*]

real :: b(n)[p, *]

real :: c(n,m)[0:p, -7:q, +11:%]

real, allocatable :: w(:)[:,:]
type(field),allocatable :: maxwell|:,:]

UNIVERSITY OF MINNESOTA

11



Communication Using CAF Syntax

y(:) =x(:)[p]

x(index(k)) = y[index(p)]

x()gql =x(:) + x(:)[p]

Absent co-dimension defaults to the local object.
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One-to-One Execution Model

1 P q *
x(1) x(1) x(1) | x(1)[q] ] x(1) x(1)
x(n) x(n) x(n) (@) x(n) Xln)
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Many-to-One Execution Model

1 P q *
x(1) x(1) x(1) | x(1)[q] ] x(1) x(1)
x(n) x(n) x(n) (@) x(n) Xln)
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One-to-Many Execution Model

1 P q *
x(1) x(1) x(1) | x(1)[q] ] x(1) x(1)
x(n) x(n) x(n) (@) x(n) Xln)
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Many-to-Many Execution Model

1 P q *
x(1) x(1) x(1) | x(1)[q] ] x(1) x(1)
x(n) x(n) x(n) (@) x(n) Xln)

W
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What Do Co-Dimensions Mean?

real :: x(n)[p,q,*]

Replicate an real array called x of local length n,
one on each image.

Build a map so each image knows how to find the
array on any other image.

Organize images in a logical (not physical) three-
dimensional grid.

The last co-dimension acts like an assumed size
array: = = num_images()/(pxq)
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x[4,*] this_image() = 15 this_image(x) = (3.,4)

1 2 3 4
1 5 9 13
2 6 10 14
3 / 11 15
4 38 12 16
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x[0:3,0:%*] this_image() = 15 this_image(x) = (2,3)

0 1 2 3
s | 5 9 13
2 6 10 14
3 / 11 15
4 8 12 16
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x[-5:-2,0:*]  this_image() = 15 this_image(x) = (-3, 3)

0) 1 2 3
| 5 9 13
4|2 6 10 14
L |3 7 11 15
L |4 8 12 16
JR

20



x[0:1,0:*]  this_image() = 15 this_image(x) = (0,7)
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x[3,0:*] num_images() = 13

1 2 3 4
4 / 10 13
5 38 11 -
6 9 12 -
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Procedure Interfaces
Co-dimensions are interpreted locally.
real :: x[*]

call sub(x,p)

subroutine sub(x,p)
integer :: p
real :: x[p,*]

end subroutine
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Example O

program ex0

implicit none

real :: z[3,0:%]

integer :: me(2)

integer :: 1IAm

1Am = this_image()

me = this_image(z)

Z =1Am

sync all

write(*,"('Hello from image '15,' (',15,',',15,")°,10.3)") 1Am, me,z[1.4]

Ilwrite(*,"('Hello from image ',15,' (',15,',',13,")°,10.3)") 1Am, me,z[2.4 ]
end program ex0
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Synchronization and Memory Consistency
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Synchronization

sync all

Full barrier; wait for all images before continuing.
sync images(list)

Partial barrier with images in list(:)
sync memory

Make local co-arrays visible.
critical

One image at a time
lock/unlock

Control access to a co-array variable
spin loops

Spin on a co-array until it changes
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Hidden Sync’s

Hidden sync all after variable declarations
Hidden sync all after allocating a co-array
Hidden sync all before deallocating a co-array
Hidden sync all before end program
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sync images|()

if (this_image() == 1) then
sync images(*)

else
sync images(1)

end 1f
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Examples

« Global reductions
» Matrix multiplication
- Halo exchange
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Example 1: Global sum
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Global Sum

subroutine globalSum(x)
real(kind=8),dimension[0:*] :: x
real(kind=8) :: work

integer n,bit,i,mypal,dim,me, m
dim = log2_images()

if(dim .eq. 0) return

m = 2**dim

bit = 1

me = this_image(x)
do i=1,dim

mypal=xor(me,bit)
bit=shiftl(bit,1)
sync all
work = x[mypal]
sync all
X=X+work
end do
- end subroutine globalSum
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Exercise 1: Global Sum

Write the function log2_images().

Remove the power-of-two assumption.
Convince yourself that two sync’s are necessary.
Rewrite with only one sync.

Rewrite using sync images.
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Example 2: Matrix Multiplication
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Matrix Multiplication

real,dimension(n,n) :: a,b,c
do k=1,n
c(i,j) = c(i,)) + a(ik)*b(k,))

end do
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myQ

Matrix Multiplication
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Matrix Multiplication

real,dimension(n,n)[p,*] :: a,b,c

do k=1,n
do g=1,p
c(i,j)[myP,myQ] = c(i,j)[myP,myQ]
+ a(i,k)[myP, q]*b(k,j)[q,myQ]
enddo
enddo
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Matrix Multiplication

real,dimension(n,n)[p,*] :: a,b,c

do k=1,n
do g=1,p
c(i,j) = c(iy)) + a(Lk)[myP, q]*b(k,j)[q,myQ]
enddo
enddo
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Block Matrix Multiplication

104

vt x 107" 1077 .

10 4 >
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Figure 4: Time as a function of the number of processors p — ¢ x v for block
matrix multiplication.  The matrix size s 1000 » 1000 with blocks of size
1000 /g = 1000/, Time is expressed in dimensionless giga-clock-ticks, vt = 1079,
as measured on a CRAY-T3IE with frequency @ — 300MHz. The dotted line

represents perfect scaling
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program matmul
implicit none
real, allocatable,dimension(:,:), codimension|[:,:] :: a,b,c

integer :: i
integer :: j
integer :: k
integer :: 1
integer,parameter :: n = 10
integer :: p
integer :: q

integer :: iAm
integer :: myP
integer :: myQ
p = num_images()
q = int(sqrt(float(p)))
1Am = this_image()
if (q*q /=p) then
if(iAm == 1) write (*,"('num_iamges must be square: p='i5)") p
stop
end if
allocate(a(n,n)[q,*])
allocate(b(n,n)[q,*])
allocate(c(n,n)[q,*])
myP = this_image(c,1)
myQ = this_image(c,2)
a=10
b= 1.0
c=00
sync all
doi=1,n
do j=1,n
do k=1,n
dol=1,q
c(i) = c(is)) + a(iLK)[myP, 1#b(kj)[L,myQ]
end do
end do
end do
end do
if (any(c /= n*q)) write(*,"(‘'error on image: ',2i5,e20.10)") myP, myQ, c(1,1)
write(*,"(‘check sum[',i5',',i5,'',20.10)") myP, myQ, sum(c) - g*n**3
deallocate(a,b,c)
end program matmul 39
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Exercise 2: Matrix Multiplication

1) Remove the restrictions (n,n) and [q,q].
2) Change element-by-element to a block algorithm.
3) How many of these can you implement?

R.W. Numrich, Parallel numerical algorithms based on tensor notation and Co-Array
Fortran syntax, Parallel Computing 31, 588-607 (2005)

4) When is one better than another?

C,=AB,
C,=AB,
C’ = A’B’ Sum over repeated indices
q r—q
C =AF
Cl=A"B,
g



Example 3: Halo exchange
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Incremental Conversion
of the UKMet Climate Model to Co-Array
Fortran

- Fields are allocated on the local heap

* One processor knows nothing about another
processor’s local memory structure

- But each processor knows how to find co-arrays in
another processor’'s memory

- Define one supplemental co-array structure

« Create an alias for the local field through the co-array
field

- Communicate through the alias
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Co-array Alias to Local Fields

type field
real,pointer :: ptr(:,:)
end type field

real :: u(0:m+1,0:n+1,lev)
type(field) :: z[p,*]

Z%ptr => u
u = z[p,q]%ptr

43
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Irregular and Changing Data Structures

2%ptr

z[p.q]%ptr

44
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2%ptr
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Problem Decomposition and Co-Dimensions

N
[p,q+1]
[p-1.9] p.q] [p+1.q] 2
p.q-1]
S
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Cyclic Boundary Conditions
East-West Direction

real,dimension [p,”] :: z

myP = this_image(z,1) IEast-West
myQ = this_image(z,2) INorth-South
West = myP - 1

If(West < 1) West = nProcEW ICyclic

East = myP + 1
If(East > nProcEW) East = 1 ICyclic
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East-West Halo Swap

« Move last row from west to my first halo

u(0,1:n,1:lev)

z|West,myQ]%ptr(m,1:n,1:lev)
« Move first row from east to my last halo

u(m+1,1:n,1:lev)=z[East,myQ]%Field(1,1:n,1:lev)
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Exercises

Write code for the North-South exchange.
Change the halo width to some value w=1.

What happens if the sizes of the blocks on different
Images are not equal?

UNIVERSITY OF MINNESOTA

48



Where Can | Try CAF?
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CRAY Co-Array Fortran

CAF has been a supported feature of Cray Fortran since release 3.1

CRAY T3E

— 90 -Z src.fo0

— mpprun -n7 a.out
CRAY X1

— ftn -Z src.f90

— aprun -n17 a.out
CRAY XT4/5

— ftn -hcaf src.f90

— aprun -n13 a.out

’
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Open Source g95 compiler

- Andy Vaught has produced a co-array compiler.

« Download from

— www.g95.0rg/downloads.shtml
— www.g95.org/coarray.shtml

— ar -r libf95.a coarray.o
— 995 src.f90
— cocon -i4 a.out
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Other Efforts

Rice University is developing a compiling system for
CAF.

University of Houston is developing a CAF compiler.

IBM compiler and run-time system under
development.

Intel compiler under development.
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Total Time (s)

SHMEM| MPI
PxQ | SHMEM | W/CAF | w/CAF MPI
SWAP | swaP
2x2 | 191 198 201 205
2x4 | 95.0 | 99.0 100 105
2x8 | 49.8 | 52.2 | 52.7 55.5
4x4 | 50.0 | 53.7 | 54.4 55.9
4x8 | 27.3 | 29.8 | 31.6 32.4
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CAF and Object-Oriented Programming
Methodology
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Object-Oriented Programming combined
with Co-Arrays

- Fortran 2003 is an object-oriented language.
— allocate/deallocate for dynamic memory management
— Named derived types are similar to classes
— Type-associated methods.

— Constructors and destructors can be defined to encapsulate
parallel data structures.

— Generic interfaces can be used to overload procedures
based on the named types of the actual arguments.
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A Parallel Class Library for CAF

- Combine the object-based features of Fortran 95 with co-
array syntax to obtain an efficient parallel numerical class
library that scales to large numbers of processors.

* Encapsulate all the hard stuff in modules using nhamed
objects, constructors,destructors, generic interfaces,
dynamic memory management.

— R.W. Numrich, A Parallel Numerical Library for Co-Array Fortran,
Springer Lecture Notes in Computer Science, LNCS 3911, 960-
969 (2005)

— R.W. Numrich, CafLib User Manual, Tech Report (2006)
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CAF Parallel Class Libraries

use BlockMatrices
use BlockVectors

type(PivotVector) :: pivot[p,*]
type(BlockMatrix) :: a[p,*]
type(BlockVector) :: x[*]

call newBlockMatrix(a,n,p)
call newPivotVector(pivot,a)
call newBlockVector(x,n)
call luDecomp(a,pivot)

call solve(a,x,pivot)
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LU Decomposition

10—

vt = 107

10

1 1 1
2I) ll 3_‘ 2.5 Il oh ! -)' l‘\
}l

Figure 6 Time as a function of the number of processors p — g xr for block-cyclic
LU decomposition. The matrix size is 1000 = 1000 with blocks of size 48 x 48,

4 as measured on

Time iz expressed in dimensionless giga-clock-ticks, wf x 10
a CRAY-T3E with frequency v — 300MHz., The dotted line represents perfoct
scaling, The curve marked with bullets (o) is code written in Co-Array Fortran

I'he curve marked with tnangles (9) is SCALAPACK code.
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Communication for LU Decomposition

- Row interchange

— temp(:) = a(k,:)

—a(k,:)) =a(),:) [p.myQ]

—a(),}) [p,myQ] = temp(:)
- Row “Broadcast’

— LO(i:n,i) = a(i:,n,i) [p,p] i=1,n
* Row/Column “Broadcast”

— L1 (:,) =a(:,:) [myP,p]

— U1(;,2) = a(:,:) [p,myQ]
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Vector Maps

61
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Cyclic-Wrap Distribution

/ 2 5 3 6
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Vector Objects

type vector
real,allocatable :: vector(:)
integer :: lowerBound
Integer :: upperBound
Integer :: halo

end type vector
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Block Vectors

type BlockVector
type(VectorMap) :: map
type(Vector),allocatable :: block(:)
--other components--

end type BlockVector

£ ’
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Block Matrices

type BlockMatrix
type(VectorMap) :: rowMap
type(VectorMap) :: colMap
type(Matrix),allocatable :: block(:,:)
--other components--

end type BlockMatrix
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CAF I/O for Named Obijects

use BlockMatrices
use DiskFiles

type(PivotVector) :: pivot[p,*]
type(BlockMatrix) :: a[p,*]
type(DirectAccessDiskFile) :: file

call newBlockMatrix(a,n,p)
call newPivotVector(pivot,a)
call newDiskFile(file)

call readBlockMatrix(a,file)
call luDecomp(a,pivot)

call writeBlockMatrix(a,file)
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Summary
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Why Language Extensions?

Programmer uses a familiar language.

Syntax gives the programmer control and flexibility.
Compiler concentrates on local code optimization.
Compiler evolves as the hardware evolves.

— Lowest latency and highest bandwidth allowed by
the hardware

— Data ends up in registers or cache not in memory
— Arbitrary communication patterns
— Communication along multiple channels
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Summary

« Co-dimensions match your logical problem
decomposition

— Run-time system matches them to hardware
decomposition

— Explicit representation of neighbor relationships
— Flexible communication patterns
« Code simplicity
— Non-intrusive code conversion
— Modernize code to Fortran 2003 standard

- Code is always simpler and performance is always
better than MPI.
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sync images|()

me = this_image()

ne = num_images()

if(me == 1) then
p=1

else
sync images(me-1)
p=plme-1]+ 1

end 1f

if(me<ne) sync images(me+1)
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Proposed Synchronization

notify()/query()
Asynchronous split barrier
sync team(teamQObject)
Synchronize within a subset of images.

collectives
CcO_Ssum, cO_max, co_min, etc.
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