Introduction to Co-Array Fortran

Robert W. Numrich

Minnesota Supercomputing Institute
University of Minnesota, Minneapolis
rwn@msi.umn.edu

UNIVERSITY OF MINNESOTA

What is Co-Array Fortran?

- Co-Array Fortran is one of three simple language
extensions to support explicit parallel programming.

— Co-Array Fortran (CAF) Minnesota

— Unified Parallel C (UPC) GWU-Berkeley-NSA-
Michigan Tech

— Titanium (extension to Java) Berkeley
Recent additions that are not simple extensions
— Chapel from Cray

— X10 from IBM

m UNIVERSITY OF MINNESOTA

Programming Models

« Libraries
— MPI, Shmem, ScaLAPACK, Trilinos, ...

- Language extensions
— CAF, UPC, Titanium, Intel Ct, Microsoft C#...

- Language directives
— HPF, OpenMP, ...

* New languages
— X10, Chapel, ...

m UNIVERSITY OF MINNESOTA

Arguments about Programming Models

Libraries are more portable than language extensions but may
not be very flexible.

Language extensions allow compilers to optimize for specific
hardware capabilities but they may not do it well.

- Language directives work well for loop-level parallelism and for
simple data decomposition but not for more complicated things.

- New languages allow for higher levels of abstraction, but they
are far removed from hardware and people won’t adopt them
quickly.

- The significant differences between models usually comes down
to three questions:

— Does the model use a global view of data or a local view of data?

— Does the model assume a single thread of control or multiple
threads of control?

— How is the affinity between data and work defined?

m UNIVERSITY OF MINNESOTA

The Guiding Principle for the Co-Array Model

- What is the smallest change required to make
Fortran an effective parallel language?

« How can this change be expressed so that it is
intuitive and natural for Fortran programmers?

- How can it be expressed so that existing compiler
technology can implement it easily and efficiently?

m UNIVERSITY OF MINNESOTA

The Co-Array Programming Model

- Single-Program-Multiple-Data (SPMD)
— A program is replicated a fixed number of times.
— Each replication is called an image.

— The run-time system assigns a physical
processor to perform work on the data
associated with an image.

- Images execute asynchronously except where
explicit synchronization is inserted in the code.
— All data is local
— All computation is local
— One-sided communication thru co-dimensions
* Programmer is responsible for
— Explicit data decomposition
— Explicit synchronization

m UNIVERSITY OF MINNESOTA

Co-Array Fortran Execution Model

The number of images is fixed and each image has its own index,
retrievable at run-time:

1 < num_images()
1 < this_image() < num_images()
Each image executes the same program independently of the others.

The programmer inserts explicit synchronization and branching as
needed.

An “object” has the same name in each image.
Each image works on its own local data.

An image moves remote data to local data through, and only
through, explicit co-array syntax.

m UNIVERSITY OF MINNESOTA

What is Co-Array Syntax?

- Co-Array syntax is a simple parallel extension to normal
Fortran syntax.
— It uses normal rounded brackets () to point to data in local memory.
— It uses square brackets [| to point to data in remote memory.
— Syntactic and semantic rules apply separately but equally to () and [|.

m UNIVERSITY OF MINNESOTA

Declaration of a Co-Array

real :: x(n)[*]

UNIVERSITY OF MINNESOTA

Co-Array Memory Model

1 P q *
x(1) x(1) x(1) | x(1)[q]] x(1) x(1)
x(n) x(n) x(n) (@) x(n) Xln)

m UNIVERSITY OF MINNESOTA
10

Examples of Co-Array Declarations

real :: a(n)[*]

complex :: z[(0:]

integer :: index(n)|*]

real :: b(n)[p, *]

real :: c(n,m)[0:p, -7:q, +11:%]

real, allocatable :: w(:)[:,:]
type(field),allocatable :: maxwell|:,:]

UNIVERSITY OF MINNESOTA

11

Communication Using CAF Syntax

y(:) =x(:)[p]

x(index(k)) = y[index(p)]

x()gql =x(:) + x(:)[p]

Absent co-dimension defaults to the local object.

m UNIVERSITY OF MINNESOTA

12

One-to-One Execution Model

1 P q *
x(1) x(1) x(1) | x(1)[q]] x(1) x(1)
x(n) x(n) x(n) (@) x(n) Xln)

T

One
Iy | Physial
Processor 13

Many-to-One Execution Model

1 P q *
x(1) x(1) x(1) | x(1)[q]] x(1) x(1)
x(n) x(n) x(n) (@) x(n) Xln)

T

Many
Iy | Fhsial
Processors 14

One-to-Many Execution Model

1 P q *
x(1) x(1) x(1) | x(1)[q]] x(1) x(1)
x(n) x(n) x(n) (@) x(n) Xln)

W

One
Iy | Physial
Processor 15

Many-to-Many Execution Model

1 P q *
x(1) x(1) x(1) | x(1)[q]] x(1) x(1)
x(n) x(n) x(n) (@) x(n) Xln)

W

Many
Iy | Fhsial
Processors 16

What Do Co-Dimensions Mean?

real :: x(n)[p,q,*]

Replicate an real array called x of local length n,
one on each image.

Build a map so each image knows how to find the
array on any other image.

Organize images in a logical (not physical) three-
dimensional grid.

The last co-dimension acts like an assumed size
array: = = num_images()/(pxq)

UNIVERSITY OF MINNESOTA

17

x[4,*] this_image() = 15 this_image(x) = (3.,4)

1 2 3 4
1 5 9 13
2 6 10 14
3 / 11 15
4 38 12 16

m UNIVERSITY OF MINNESOTA

18

x[0:3,0:%*] this_image() = 15 this_image(x) = (2,3)

0 1 2 3
s | 5 9 13
2 6 10 14
3 / 11 15
4 8 12 16

m UNIVERSITY OF MINNESOTA

19

x[-5:-2,0:*] this_image() = 15 this_image(x) = (-3, 3)

0) 1 2 3
| 5 9 13
4|2 6 10 14
L |3 7 11 15
L |4 8 12 16
JR

20

x[0:1,0:*] this_image() = 15 this_image(x) = (0,7)

m UNIVERSITY OF MINNESOTA

21

x[3,0:*] num_images() = 13

1 2 3 4
4 / 10 13
5 38 11 -
6 9 12 -

UNIVERSITY OF MINNESOTA

22

Procedure Interfaces
Co-dimensions are interpreted locally.
real :: x[*]

call sub(x,p)

subroutine sub(x,p)
integer :: p
real :: x[p,*]

end subroutine

UNIVERSITY OF MINNESOTA

23

Example O

program ex0

implicit none

real :: z[3,0:%]

integer :: me(2)

integer :: 1IAm

1Am = this_image()

me = this_image(z)

Z =1Am

sync all

write(*,"('Hello from image '15,' (',15,',',15,")°,10.3)") 1Am, me,z[1.4]

Ilwrite(*,"('Hello from image ',15,' (',15,',',13,")°,10.3)") 1Am, me,z[2.4]
end program ex0

m UNIVERSITY OF MINNESOTA

24

Synchronization and Memory Consistency

m UNIVERSITY OF MINNESOTA
25

Synchronization

sync all

Full barrier; wait for all images before continuing.
sync images(list)

Partial barrier with images in list(:)
sync memory

Make local co-arrays visible.
critical

One image at a time
lock/unlock

Control access to a co-array variable
spin loops

Spin on a co-array until it changes

m UNIVERSITY OF MINNESOTA

26

Hidden Sync’s

Hidden sync all after variable declarations
Hidden sync all after allocating a co-array
Hidden sync all before deallocating a co-array
Hidden sync all before end program

m UNIVERSITY OF MINNESOTA
27

sync images|()

if (this_image() == 1) then
sync images(*)

else
sync images(1)

end 1f

UNIVERSITY OF MINNESOTA

28

Examples

« Global reductions
» Matrix multiplication
- Halo exchange

m UNIVERSITY OF MINNESOTA

29

Example 1: Global sum

UNIVERSITY OF MINNESOTA

30

Global Sum

subroutine globalSum(x)
real(kind=8),dimension[0:*] :: x
real(kind=8) :: work

integer n,bit,i,mypal,dim,me, m
dim = log2_images()

if(dim .eq. 0) return

m = 2**dim

bit = 1

me = this_image(x)
do i=1,dim

mypal=xor(me,bit)
bit=shiftl(bit,1)
sync all
work = x[mypal]
sync all
X=X+work
end do
- end subroutine globalSum

M UNIVERSITY OF MINNESOTA

31

SR 55§ I =

Exercise 1: Global Sum

Write the function log2_images().

Remove the power-of-two assumption.
Convince yourself that two sync’s are necessary.
Rewrite with only one sync.

Rewrite using sync images.

UNIVERSITY OF MINNESOTA

32

Example 2: Matrix Multiplication

UNIVERSITY OF MINNESOTA

33

Matrix Multiplication

real,dimension(n,n) :: a,b,c
do k=1,n
c(i,j) = c(i,)) + a(ik)*b(k,))

end do

m UNIVERSITY OF MINNESOTA
34

myQ

Matrix Multiplication

UNIVERSITY OF MINNESOTA

35

Matrix Multiplication

real,dimension(n,n)[p,*] :: a,b,c

do k=1,n
do g=1,p
c(i,j)[myP,myQ] = c(i,j)[myP,myQ]
+ a(i,k)[myP, q]*b(k,j)[q,myQ]
enddo
enddo

m UNIVERSITY OF MINNESOTA

36

Matrix Multiplication

real,dimension(n,n)[p,*] :: a,b,c

do k=1,n
do g=1,p
c(i,j) = c(iy)) + a(Lk)[myP, q]*b(k,j)[q,myQ]
enddo
enddo

m UNIVERSITY OF MINNESOTA
37

Block Matrix Multiplication

104

vt x 107" 1077 .

10 4 >
' ' ' ' ' ' '
I nl 92 93 9l ol ofi 9T 95 99 ol
,l

Figure 4: Time as a function of the number of processors p — ¢ x v for block
matrix multiplication. The matrix size s 1000 » 1000 with blocks of size
1000 /g = 1000/, Time is expressed in dimensionless giga-clock-ticks, vt = 1079,
as measured on a CRAY-T3IE with frequency @ — 300MHz. The dotted line

represents perfect scaling

UNIVERSITY OF MINNESOTA

38

program matmul
implicit none
real, allocatable,dimension(:,:), codimension|[:,:] :: a,b,c

integer :: i
integer :: j
integer :: k
integer :: 1
integer,parameter :: n = 10
integer :: p
integer :: q

integer :: iAm
integer :: myP
integer :: myQ
p = num_images()
q = int(sqrt(float(p)))
1Am = this_image()
if (q*q /=p) then
if(iAm == 1) write (*,"('num_iamges must be square: p='i5)") p
stop
end if
allocate(a(n,n)[q,*])
allocate(b(n,n)[q,*])
allocate(c(n,n)[q,*])
myP = this_image(c,1)
myQ = this_image(c,2)
a=10
b= 1.0
c=00
sync all
doi=1,n
do j=1,n
do k=1,n
dol=1,q
c(i) = c(is)) + a(iLK)[myP, 1#b(kj)[L,myQ]
end do
end do
end do
end do
if (any(c /= n*q)) write(*,"(‘'error on image: ',2i5,e20.10)") myP, myQ, c(1,1)
write(*,"(‘check sum[',i5',',i5,'',20.10)") myP, myQ, sum(c) - g*n**3
deallocate(a,b,c)
end program matmul 39

UNIVERSITY OF MINNESOTA

Exercise 2: Matrix Multiplication

1) Remove the restrictions (n,n) and [q,q].
2) Change element-by-element to a block algorithm.
3) How many of these can you implement?

R.W. Numrich, Parallel numerical algorithms based on tensor notation and Co-Array
Fortran syntax, Parallel Computing 31, 588-607 (2005)

4) When is one better than another?

C,=AB,
C,=AB,
C’ = A’B’ Sum over repeated indices
q r—q
C =AF
Cl=A"B,
g

Example 3: Halo exchange

UNIVERSITY OF MINNESOTA

41

Incremental Conversion
of the UKMet Climate Model to Co-Array
Fortran

- Fields are allocated on the local heap

* One processor knows nothing about another
processor’s local memory structure

- But each processor knows how to find co-arrays in
another processor’'s memory

- Define one supplemental co-array structure

« Create an alias for the local field through the co-array
field

- Communicate through the alias

m UNIVERSITY OF MINNESOTA

42

Co-array Alias to Local Fields

type field
real,pointer :: ptr(:,:)
end type field

real :: u(0:m+1,0:n+1,lev)
type(field) :: z[p,*]

Z%ptr => u
u = z[p,q]%ptr

43

UNIVERSITY OF MINNESOTA

Irregular and Changing Data Structures

2%ptr

z[p.q]%ptr

44

A 4

2%ptr

UNIVERSITY OF MINNESOTA

Problem Decomposition and Co-Dimensions

N
[p,q+1]
[p-1.9] p.q] [p+1.q] 2
p.q-1]
S

45

Cyclic Boundary Conditions
East-West Direction

real,dimension [p,”] :: z

myP = this_image(z,1) IEast-West
myQ = this_image(z,2) INorth-South
West = myP - 1

If(West < 1) West = nProcEW ICyclic

East = myP + 1
If(East > nProcEW) East = 1 ICyclic

m UNIVERSITY OF MINNESOTA

46

East-West Halo Swap

« Move last row from west to my first halo

u(0,1:n,1:lev)

z|West,myQ]%ptr(m,1:n,1:lev)
« Move first row from east to my last halo

u(m+1,1:n,1:lev)=z[East,myQ]%Field(1,1:n,1:lev)

UNIVERSITY OF MINNESOTA

47

Exercises

Write code for the North-South exchange.
Change the halo width to some value w=1.

What happens if the sizes of the blocks on different
Images are not equal?

UNIVERSITY OF MINNESOTA

48

Where Can | Try CAF?

UNIVERSITY OF MINNESOTA

49

CRAY Co-Array Fortran

CAF has been a supported feature of Cray Fortran since release 3.1

CRAY T3E

— 90 -Z src.fo0

— mpprun -n7 a.out
CRAY X1

— ftn -Z src.f90

— aprun -n17 a.out
CRAY XT4/5

— ftn -hcaf src.f90

— aprun -n13 a.out

’

UNIVERSITY OF MINNESOTA

Open Source g95 compiler

- Andy Vaught has produced a co-array compiler.

« Download from

— www.g95.0rg/downloads.shtml
— www.g95.org/coarray.shtml

— ar -r libf95.a coarray.o
— 995 src.f90
— cocon -i4 a.out

m UNIVERSITY OF MINNESOTA

51

Other Efforts

Rice University is developing a compiling system for
CAF.

University of Houston is developing a CAF compiler.

IBM compiler and run-time system under
development.

Intel compiler under development.

m UNIVERSITY OF MINNESOTA

52

References

John Reid, Coarrays in the next Fortran Standard (2009) ISO/IEC
JTC1/SC22/WG5 N1787

J. Reid and R.W. Numrich, Co-arrays in the next Fortran Standard,
Scientific Programming 15(1), 9-26 (2007)

R.W. Numrich, A Parallel Numerical Library for Co-Array Fortran,
Springer Lecture Notes in Computer Science 3911, 960-969 (2005)
R.W. Numrich, Parallel numerical algorithms based on tensor notation
and Co-Array Fortran syntax, Parallel Computing 31, 5688-607 (2005)
R.W. Numrich and J.K. Reid, Co-Array Fortran for Parallel
Programming, ACM Fortran Forum 17(2):1-31 (1998)

R.W. Numrich, J. Reid and K. Kim, Writing a Multigrid Solver Using Co-
Array Fortran, Springer Lecture Notes in Computer Science 1541, 390-
399 (1998)

R.W. Numrich, F— A Parallel Extension to Cray Fortran, Scientific
Programming 6(3), 275-284 (1997)

m UNIVERSITY OF MINNESOTA

53

Total Time (s)

SHMEM| MPI
PxQ | SHMEM | W/CAF | w/CAF MPI
SWAP | swaP
2x2 | 191 198 201 205
2x4 | 95.0 | 99.0 100 105
2x8 | 49.8 | 52.2 | 52.7 55.5
4x4 | 50.0 | 53.7 | 54.4 55.9
4x8 | 27.3 | 29.8 | 31.6 32.4

54

CAF and Object-Oriented Programming
Methodology

UNIVERSITY OF MINNESOTA

55

Object-Oriented Programming combined
with Co-Arrays

- Fortran 2003 is an object-oriented language.
— allocate/deallocate for dynamic memory management
— Named derived types are similar to classes
— Type-associated methods.

— Constructors and destructors can be defined to encapsulate
parallel data structures.

— Generic interfaces can be used to overload procedures
based on the named types of the actual arguments.

m UNIVERSITY OF MINNESOTA

56

A Parallel Class Library for CAF

- Combine the object-based features of Fortran 95 with co-
array syntax to obtain an efficient parallel numerical class
library that scales to large numbers of processors.

* Encapsulate all the hard stuff in modules using nhamed
objects, constructors,destructors, generic interfaces,
dynamic memory management.

— R.W. Numrich, A Parallel Numerical Library for Co-Array Fortran,
Springer Lecture Notes in Computer Science, LNCS 3911, 960-
969 (2005)

— R.W. Numrich, CafLib User Manual, Tech Report (2006)

m UNIVERSITY OF MINNESOTA

57

CAF Parallel Class Libraries

use BlockMatrices
use BlockVectors

type(PivotVector) :: pivot[p,*]
type(BlockMatrix) :: a[p,*]
type(BlockVector) :: x[*]

call newBlockMatrix(a,n,p)
call newPivotVector(pivot,a)
call newBlockVector(x,n)
call luDecomp(a,pivot)

call solve(a,x,pivot)

UNIVERSITY OF MINNESOTA

58

LU Decomposition

10—

vt = 107

10

1 1 1
2I) ll 3_‘ 2.5 Il oh ! -)' l‘\
}l

Figure 6 Time as a function of the number of processors p — g xr for block-cyclic
LU decomposition. The matrix size is 1000 = 1000 with blocks of size 48 x 48,

4 as measured on

Time iz expressed in dimensionless giga-clock-ticks, wf x 10
a CRAY-T3E with frequency v — 300MHz., The dotted line represents perfoct
scaling, The curve marked with bullets (o) is code written in Co-Array Fortran

I'he curve marked with tnangles (9) is SCALAPACK code.

UNIVERSITY OF MINNESOTA

59

Communication for LU Decomposition

- Row interchange

— temp(:) = a(k,:)

—a(k,:)) =a(),:) [p.myQ]

—a(),}) [p,myQ] = temp(:)
- Row “Broadcast’

— LO(i:n,i) = a(i:,n,i) [p,p] i=1,n
* Row/Column “Broadcast”

— L1 (:,) =a(:,:) [myP,p]

— U1(;,2) = a(:,:) [p,myQ]

UNIVERSITY OF MINNESOTA

60

Vector Maps

61

UNIVERSITY OF MINNESOTA

Cyclic-Wrap Distribution

/ 2 5 3 6

UNIVERSITY OF MINNESOTA

62

Vector Objects

type vector
real,allocatable :: vector(:)
integer :: lowerBound
Integer :: upperBound
Integer :: halo

end type vector

UNIVERSITY OF MINNESOTA

Block Vectors

type BlockVector
type(VectorMap) :: map
type(Vector),allocatable :: block(:)
--other components--

end type BlockVector

£ ’

UNIVERSITY OF MINNESOTA

Block Matrices

type BlockMatrix
type(VectorMap) :: rowMap
type(VectorMap) :: colMap
type(Matrix),allocatable :: block(:,:)
--other components--

end type BlockMatrix

m UNIVERSITY OF MINNESOTA
65

CAF I/O for Named Obijects

use BlockMatrices
use DiskFiles

type(PivotVector) :: pivot[p,*]
type(BlockMatrix) :: a[p,*]
type(DirectAccessDiskFile) :: file

call newBlockMatrix(a,n,p)
call newPivotVector(pivot,a)
call newDiskFile(file)

call readBlockMatrix(a,file)
call luDecomp(a,pivot)

call writeBlockMatrix(a,file)

66

Summary

UNIVERSITY OF MINNESOTA

67

Why Language Extensions?

Programmer uses a familiar language.

Syntax gives the programmer control and flexibility.
Compiler concentrates on local code optimization.
Compiler evolves as the hardware evolves.

— Lowest latency and highest bandwidth allowed by
the hardware

— Data ends up in registers or cache not in memory
— Arbitrary communication patterns
— Communication along multiple channels

m UNIVERSITY OF MINNESOTA

68

Summary

« Co-dimensions match your logical problem
decomposition

— Run-time system matches them to hardware
decomposition

— Explicit representation of neighbor relationships
— Flexible communication patterns
« Code simplicity
— Non-intrusive code conversion
— Modernize code to Fortran 2003 standard

- Code is always simpler and performance is always
better than MPI.

m UNIVERSITY OF MINNESOTA

69

sync images|()

me = this_image()

ne = num_images()

if(me == 1) then
p=1

else
sync images(me-1)
p=plme-1]+ 1

end 1f

if(me<ne) sync images(me+1)

UNIVERSITY OF MINNESOTA

70

Proposed Synchronization

notify()/query()
Asynchronous split barrier
sync team(teamQObject)
Synchronize within a subset of images.

collectives
CcO_Ssum, cO_max, co_min, etc.

UNIVERSITY OF MINNESOTA

71

