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What is Co-Array Fortran?

• Co-Array Fortran is one of three simple language
extensions to support explicit parallel programming.
– Co-Array Fortran  (CAF) Minnesota
– Unified Parallel C (UPC) GWU-Berkeley-NSA-

Michigan Tech
– Titanium (extension to Java) Berkeley

• Recent additions that are not simple extensions
– Chapel from Cray
– X10 from IBM
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Programming Models

• Libraries
– MPI, Shmem, ScaLAPACK, Trilinos, …

• Language extensions
– CAF, UPC, Titanium, Intel Ct, Microsoft C#…

• Language directives
– HPF, OpenMP, …

• New languages
– X10, Chapel, …
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Arguments about Programming Models

• Libraries are more portable than language extensions but may
not be very flexible.

• Language extensions allow compilers to optimize for specific
hardware capabilities but they may not do it well.

• Language directives work well for loop-level parallelism and for
simple data decomposition but not for more complicated things.

• New languages allow for higher levels of abstraction, but they
are far removed from hardware and people won’t adopt them
quickly.

• The significant differences between models usually comes down
to three questions:
– Does the model use a global view of data or a local view of data?
– Does the model assume a single thread of control or multiple

threads of control?
– How is the affinity between data and work defined?
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The Guiding Principle for the Co-Array Model

• What is the smallest change required to make
Fortran an effective parallel language?

• How can this change be expressed so that it is
intuitive and natural for Fortran programmers?

• How can it be expressed so that existing compiler
technology can implement it easily and efficiently?
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The Co-Array Programming Model

• Single-Program-Multiple-Data (SPMD)
– A program is replicated a fixed number of times.
– Each replication is called an image.
– The run-time system assigns a physical

processor to perform work on the data
associated with an image.

• Images execute asynchronously except where
explicit synchronization is inserted in the code.
– All data is local
– All computation is local
– One-sided communication thru co-dimensions

• Programmer is responsible for
– Explicit data decomposition
– Explicit synchronization
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Co-Array Fortran Execution Model

• The number of images is fixed and each image has its own index,
retrievable at run-time:
                   1 ≤ num_images()
                   1 ≤  this_image()  ≤ num_images()

• Each image executes the same program independently of the others.
• The programmer inserts explicit synchronization and branching as

needed.
• An “object” has the same name in each image.
• Each image works on its own local data.
• An image moves remote data to local data through, and only

through, explicit co-array syntax.
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What is Co-Array Syntax?

• Co-Array syntax is a simple parallel extension to normal
Fortran syntax.
– It uses normal rounded brackets ( ) to point to data in local memory.
– It uses square brackets [ ] to point to data in remote memory.
– Syntactic and semantic rules apply separately but equally to ( ) and [ ].
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Declaration of a Co-Array

real :: x(n)[∗]
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Co-Array Memory Model
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Examples of Co-Array Declarations

real :: a(n)[∗]
complex :: z[0:∗]
integer :: index(n)[∗]
real :: b(n)[p, ∗]
real :: c(n,m)[0:p, -7:q, +11:∗]
real, allocatable :: w(:)[:,:]
type(field),allocatable :: maxwell[:,:]



12

Communication Using CAF Syntax

y(:) = x(:)[p]

x(index(k)) = y[index(p)]

x(:)[q] = x(:) + x(:)[p]

Absent co-dimension defaults to the local object.



13

One-to-One Execution Model
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Many-to-One Execution Model
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One-to-Many Execution Model
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Many-to-Many Execution Model
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What Do Co-Dimensions Mean?

                                   real :: x(n)[p,q,∗]

1. Replicate an real array called x of local length n,
one on each image.

2. Build a map so each image knows how to find the
array on any other image.

3. Organize images in a logical (not physical) three-
dimensional grid.

4. The last co-dimension acts like an assumed size
array:   ∗ ⇒ num_images()/(pxq)
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x[4,*]       this_image() = 15       this_image(x) = (3,4)
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x[0:3,0:*]       this_image() = 15       this_image(x) = (2,3)
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x[-5:-2,0:*]     this_image() = 15       this_image(x) = (-3, 3)
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x[0:1,0:*]     this_image() = 15   this_image(x) = (0,7)
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x[3,0:*]     num_images() = 13
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Procedure Interfaces

real :: x[*]
call sub(x,p)
…

subroutine sub(x,p)
integer :: p
real :: x[p,*]
…
end subroutine

Co-dimensions are interpreted locally.
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Example 0
program ex0
  implicit none
  real :: z[3,0:*]
  integer :: me(2)
  integer :: iAm
  iAm = this_image()
  me   = this_image(z)
  z = iAm
  sync all
  write(*,"('Hello from image ',i5,' (',i5,',',i5,')’,f10.3)") iAm, me,z[1,4]
 !write(*,"('Hello from image ',i5,' (',i5,',',i5,')’,f10.3)") iAm, me,z[2,4]
end program ex0



25

Synchronization and Memory Consistency
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Synchronization
sync all

Full barrier; wait for all images before continuing.
sync images(list)

Partial barrier with images in list(:)
sync memory

Make local co-arrays visible.
critical

One image at a time
lock/unlock

Control access to a co-array variable
spin loops

Spin on a co-array until it changes
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Hidden Sync’s

• Hidden sync all after variable declarations
• Hidden sync all after allocating a co-array
• Hidden sync all before deallocating a co-array
• Hidden sync all before end program
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sync images()

if (this_image() == 1) then
  sync images(*)
else
  sync images(1)
end if
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Examples

• Global reductions
• Matrix multiplication
• Halo exchange
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Example 1:  Global sum
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Global Sum
subroutine globalSum(x)
real(kind=8),dimension[0:*] :: x
real(kind=8) :: work
integer n,bit,i,mypal,dim,me, m
dim = log2_images()
if(dim .eq. 0) return
m = 2**dim
bit = 1
me = this_image(x)
do i=1,dim
    mypal=xor(me,bit)
    bit=shiftl(bit,1)
     sync all
     work = x[mypal]
     sync all
     x=x+work
end do
end subroutine globalSum
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Exercise 1:  Global Sum

1. Write the function log2_images().
2. Remove the power-of-two assumption.
3. Convince yourself that two sync’s are necessary.
4. Rewrite with only one sync.
5. Rewrite using sync images.
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Example 2:  Matrix Multiplication



34

Matrix Multiplication

real,dimension(n,n) :: a,b,c

do k=1,n

c(i,j) = c(i,j)   +  a(i,k)*b(k,j)

end do
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Matrix Multiplication

= x
myP

myQ

myP

myQ
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Matrix Multiplication

real,dimension(n,n)[p,*] :: a,b,c

do k=1,n
  do q=1,p

c(i,j)[myP,myQ] = c(i,j)[myP,myQ]
                            + a(i,k)[myP, q]*b(k,j)[q,myQ]

  enddo
enddo
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Matrix Multiplication

real,dimension(n,n)[p,*] :: a,b,c

do k=1,n
  do q=1,p

c(i,j) = c(i,j) + a(i,k)[myP, q]*b(k,j)[q,myQ]
  enddo
enddo
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Block Matrix Multiplication



39

program matmul
  implicit none
  real, allocatable,dimension(:,:), codimension[:,:] :: a,b,c
  integer :: i
  integer :: j
  integer :: k
  integer :: l
  integer,parameter :: n = 10
  integer :: p
  integer :: q
  integer :: iAm
  integer :: myP
  integer :: myQ
  p = num_images()
  q = int(sqrt(float(p)))
  iAm = this_image()
    if (q*q /= p) then
       if(iAm == 1) write (*,"('num_iamges must be square:  p=',i5)") p
       stop
    end if
  allocate(a(n,n)[q,*])
  allocate(b(n,n)[q,*])
  allocate(c(n,n)[q,*])
  myP = this_image(c,1)
  myQ = this_image(c,2)
  a =  1.0
  b =  1.0
  c =  0.0
  sync all
  do i=1,n
    do j=1,n
      do k=1,n
        do l=1,q
           c(i,j) = c(i,j) + a(i,k)[myP, l]*b(k,j)[l,myQ]
        end do
      end do
    end do
  end do
  if (any(c /= n*q)) write(*,"('error on image: ',2i5,e20.10)") myP, myQ, c(1,1)
  write(*,"('check sum[',i5',',i5,']',e20.10)") myP, myQ, sum(c) - q*n**3
  deallocate(a,b,c)
end program matmul
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Exercise 2:  Matrix Multiplication

1) Remove the restrictions (n,n) and [q,q].
2) Change element-by-element to a block algorithm.
3) How many of these can you implement?

R.W. Numrich, Parallel numerical algorithms based on tensor notation and Co-Array
Fortran syntax, Parallel Computing  31, 588-607 (2005)

4) When is one better than another?

! 

Cq = A Bq

Cq = ArBq

r

Cq

p
= Ar

p
Bq

r

C = ArB
r

Cq

p
= A

p
Bq

C
p

= A
p
B

C
p

= Ar

p
B
r

Sum over repeated indices
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Example 3:  Halo exchange
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Incremental Conversion
 of the UKMet Climate Model to Co-Array

Fortran

• Fields are allocated on the local heap
• One processor knows nothing about another

processor’s local memory structure
• But each processor knows how to find co-arrays in

another processor’s memory
• Define one supplemental co-array structure
• Create an alias for the local field through the co-array

field
• Communicate through the alias
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Co-array Alias to Local Fields

type field
real,pointer :: ptr(:,:)

end type field

real :: u(0:m+1,0:n+1,lev)
type(field) :: z[p,∗]

z%ptr => u
u = z[p,q]%ptr
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Irregular and Changing Data Structures

z%ptr z%ptr

u
u

z[p,q]%ptr
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Problem Decomposition and Co-Dimensions

   [p,q-1]

[p+1,q]   [p,q] [p-1,q]

  [p,q+1]

EW

S

N
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Cyclic Boundary Conditions
 East-West Direction

real,dimension [p,*] :: z
myP = this_image(z,1)                !East-West
myQ = this_image(z,2)               !North-South

West = myP - 1
if(West < 1) West = nProcEW         !Cyclic

East = myP + 1
if(East > nProcEW) East = 1           !Cyclic
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East-West Halo Swap

• Move last row from west  to my first halo

   u(0,1:n,1:lev)   =  z[West,myQ]%ptr(m,1:n,1:lev)

• Move first row from east to my last halo

  u(m+1,1:n,1:lev)=z[East,myQ]%Field(1,1:n,1:lev)
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Exercises

1. Write code for the North-South exchange.
2. Change the halo width to some value w≥1.
3. What happens if the sizes of the blocks on different

images are not equal?
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Where Can I Try CAF?
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CRAY Co-Array Fortran

• CAF has been a supported feature of Cray Fortran since release 3.1
• CRAY T3E

– f90  -Z  src.f90
– mpprun -n7  a.out

• CRAY X1
– ftn -Z src.f90
– aprun -n17 a.out

• CRAY XT4/5
– ftn -hcaf src.f90
– aprun -n13 a.out
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Open Source g95 compiler

• Andy Vaught has produced a co-array compiler.
• Download from

– www.g95.org/downloads.shtml
– www.g95.org/coarray.shtml

– ar -r libf95.a coarray.o
– g95 src.f90
– cocon -i4 a.out
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Other Efforts

• Rice University is developing a compiling system for
CAF.

• University of Houston is developing a CAF compiler.
• IBM compiler and run-time system under

development.
• Intel compiler under development.
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Total Time (s)
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10099.095.02x4

2011981912x2

MPI
w/CAF
SWAP

 SHMEM
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CAF and  Object-Oriented Programming
Methodology
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Object-Oriented Programming combined
 with Co-Arrays

• Fortran 2003 is an object-oriented language.
– allocate/deallocate for dynamic memory management
– Named derived types are similar to classes
– Type-associated methods.
– Constructors and destructors can be defined to encapsulate

parallel data structures.
– Generic interfaces can be used to overload procedures

based on the named types of the actual arguments.
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A Parallel Class Library for CAF

• Combine the object-based features of Fortran 95 with co-
array syntax to obtain an efficient parallel numerical class
library that scales to large numbers of processors.

• Encapsulate all the hard stuff in modules using named
objects, constructors,destructors, generic interfaces,
dynamic memory management.
– R.W. Numrich, A Parallel Numerical Library for Co-Array Fortran,

Springer Lecture Notes in Computer Science, LNCS 3911, 960-
969 (2005)

– R.W. Numrich, CafLib User Manual, Tech Report (2006)
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CAF Parallel Class Libraries

  use BlockMatrices
  use BlockVectors

  type(PivotVector)  :: pivot[p,*]
  type(BlockMatrix) :: a[p,*]
  type(BlockVector) :: x[*]

  call newBlockMatrix(a,n,p)
  call newPivotVector(pivot,a)
  call newBlockVector(x,n)
  call luDecomp(a,pivot)
  call solve(a,x,pivot)



59

LU Decomposition
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Communication for LU Decomposition

• Row interchange
– temp(:) = a(k,:)
– a(k,:) = a(j,:) [p,myQ]
– a(j,:) [p,myQ] = temp(:)

• Row “Broadcast”
– L0(i:n,i) = a(i:,n,i) [p,p]   i=1,n

• Row/Column “Broadcast”
– L1 (:,:) = a(:,:) [myP,p]
– U1(:,:) = a(:,:) [p,myQ]
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   7   6   5   4   3   2   1

   3   5   2  7   1   4   6

  4  6   5  2  7  1    3

Vector Maps



62

   7   6   5   4   3   2   1

   6   3   5  2   7   4   1

Cyclic-Wrap Distribution

  7  4  1   5  2   6  3
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Vector Objects

type vector
   real,allocatable :: vector(:)
   integer :: lowerBound
   integer :: upperBound
   integer :: halo
end type vector
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Block Vectors

type BlockVector
  type(VectorMap) :: map
  type(Vector),allocatable :: block(:)
  --other components--
end type BlockVector
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Block Matrices

type BlockMatrix
  type(VectorMap) :: rowMap
  type(VectorMap) :: colMap
  type(Matrix),allocatable :: block(:,:)
  --other components--
end type BlockMatrix
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CAF I/O for Named Objects

  use BlockMatrices
  use DiskFiles

  type(PivotVector)  :: pivot[p,*]
  type(BlockMatrix) :: a[p,*]
  type(DirectAccessDiskFile) :: file

  call newBlockMatrix(a,n,p)
  call newPivotVector(pivot,a)
  call newDiskFile(file)
  call readBlockMatrix(a,file)
  call luDecomp(a,pivot)
  call writeBlockMatrix(a,file)
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Summary
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Why Language Extensions?

• Programmer uses a familiar language.
• Syntax gives the programmer control and flexibility.
• Compiler concentrates on local code optimization.
• Compiler evolves as the hardware evolves.

– Lowest latency and highest bandwidth allowed by
the hardware

– Data ends up in registers or cache not in memory
– Arbitrary communication patterns
– Communication along multiple channels
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Summary

• Co-dimensions match your logical problem
decomposition
– Run-time system matches them to hardware

decomposition
– Explicit representation of neighbor relationships
– Flexible communication patterns

• Code simplicity
– Non-intrusive code conversion
– Modernize code to Fortran 2003 standard

• Code is always simpler and performance is always
better than MPI.
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sync images()

me = this_image()
ne  = num_images()
if(me == 1) then
  p = 1
else
  sync images(me-1)
  p = p[me-1] + 1
end if
if(me<ne) sync images(me+1)
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Proposed Synchronization

notify()/query()
Asynchronous split barrier

sync team(teamObject)
Synchronize within a subset of images.

collectives
co_sum, co_max, co_min, etc.


