
Introduction to Co-Array Fortran

Robert W. Numrich

Minnesota Supercomputing Institute
University of Minnesota, Minneapolis

rwn@msi.umn.edu

2

What is Co-Array Fortran?

• Co-Array Fortran is one of three simple language
extensions to support explicit parallel programming.
– Co-Array Fortran (CAF) Minnesota
– Unified Parallel C (UPC) GWU-Berkeley-NSA-

Michigan Tech
– Titanium (extension to Java) Berkeley

• Recent additions that are not simple extensions
– Chapel from Cray
– X10 from IBM

3

Programming Models

• Libraries
– MPI, Shmem, ScaLAPACK, Trilinos, …

• Language extensions
– CAF, UPC, Titanium, Intel Ct, Microsoft C#…

• Language directives
– HPF, OpenMP, …

• New languages
– X10, Chapel, …

4

Arguments about Programming Models

• Libraries are more portable than language extensions but may
not be very flexible.

• Language extensions allow compilers to optimize for specific
hardware capabilities but they may not do it well.

• Language directives work well for loop-level parallelism and for
simple data decomposition but not for more complicated things.

• New languages allow for higher levels of abstraction, but they
are far removed from hardware and people won’t adopt them
quickly.

• The significant differences between models usually comes down
to three questions:
– Does the model use a global view of data or a local view of data?
– Does the model assume a single thread of control or multiple

threads of control?
– How is the affinity between data and work defined?

5

The Guiding Principle for the Co-Array Model

• What is the smallest change required to make
Fortran an effective parallel language?

• How can this change be expressed so that it is
intuitive and natural for Fortran programmers?

• How can it be expressed so that existing compiler
technology can implement it easily and efficiently?

6

The Co-Array Programming Model

• Single-Program-Multiple-Data (SPMD)
– A program is replicated a fixed number of times.
– Each replication is called an image.
– The run-time system assigns a physical

processor to perform work on the data
associated with an image.

• Images execute asynchronously except where
explicit synchronization is inserted in the code.
– All data is local
– All computation is local
– One-sided communication thru co-dimensions

• Programmer is responsible for
– Explicit data decomposition
– Explicit synchronization

7

Co-Array Fortran Execution Model

• The number of images is fixed and each image has its own index,
retrievable at run-time:
 1 ≤ num_images()
 1 ≤ this_image() ≤ num_images()

• Each image executes the same program independently of the others.
• The programmer inserts explicit synchronization and branching as

needed.
• An “object” has the same name in each image.
• Each image works on its own local data.
• An image moves remote data to local data through, and only

through, explicit co-array syntax.

8

What is Co-Array Syntax?

• Co-Array syntax is a simple parallel extension to normal
Fortran syntax.
– It uses normal rounded brackets () to point to data in local memory.
– It uses square brackets [] to point to data in remote memory.
– Syntactic and semantic rules apply separately but equally to () and [].

9

Declaration of a Co-Array

real :: x(n)[∗]

10

Co-Array Memory Model

x(1)

x(n)

x(1)

x(n)

x(1)[q]

p q

x(n)[p]

x(1)

x(n)

x(1)

x(n)

x(1)

x(n)

1 ∗

11

Examples of Co-Array Declarations

real :: a(n)[∗]
complex :: z[0:∗]
integer :: index(n)[∗]
real :: b(n)[p, ∗]
real :: c(n,m)[0:p, -7:q, +11:∗]
real, allocatable :: w(:)[:,:]
type(field),allocatable :: maxwell[:,:]

12

Communication Using CAF Syntax

y(:) = x(:)[p]

x(index(k)) = y[index(p)]

x(:)[q] = x(:) + x(:)[p]

Absent co-dimension defaults to the local object.

13

One-to-One Execution Model

x(1)

x(n)

x(1)

x(n)

x(1)[q]

p q

x(n)[p]

x(1)

x(n)

x(1)

x(n)

x(1)

x(n)

One
Physical
Processor

1 ∗

14

Many-to-One Execution Model

x(1)

x(n)

x(1)

x(n)

x(1)[q]

p q

x(n)[p]

x(1)

x(n)

x(1)

x(n)

x(1)

x(n)

Many
Physical

Processors

1 ∗

15

One-to-Many Execution Model

x(1)

x(n)

x(1)

x(n)

x(1)[q]

p q

x(n)[p]

x(1)

x(n)

x(1)

x(n)

x(1)

x(n)

One
Physical
Processor

1 ∗

16

Many-to-Many Execution Model

x(1)

x(n)

x(1)

x(n)

x(1)[q]

p q

x(n)[p]

x(1)

x(n)

x(1)

x(n)

x(1)

x(n)

Many
Physical

Processors

1 ∗

17

What Do Co-Dimensions Mean?

 real :: x(n)[p,q,∗]

1. Replicate an real array called x of local length n,
one on each image.

2. Build a map so each image knows how to find the
array on any other image.

3. Organize images in a logical (not physical) three-
dimensional grid.

4. The last co-dimension acts like an assumed size
array: ∗ ⇒ num_images()/(pxq)

18

x[4,*] this_image() = 15 this_image(x) = (3,4)

161284

151173

141062

13951
1

2

3

4

1 2 3 4

19

x[0:3,0:*] this_image() = 15 this_image(x) = (2,3)

161284

151173

141062

139510

1

2

3

0 1 2 3

20

x[-5:-2,0:*] this_image() = 15 this_image(x) = (-3, 3)

161284

151173

141062

13951-5

-4

-3

-2

0 1 2 3

21

x[0:1,0:*] this_image() = 15 this_image(x) = (0,7)

161412108642

15131197531
0

1

0 1 2 3 4 5 6 7

22

x[3,0:*] num_images() = 13

1

2

3

0 1 2 3

-12963

-11852

1310741
4

23

Procedure Interfaces

real :: x[*]
call sub(x,p)
…

subroutine sub(x,p)
integer :: p
real :: x[p,*]
…
end subroutine

Co-dimensions are interpreted locally.

24

Example 0
program ex0
 implicit none
 real :: z[3,0:*]
 integer :: me(2)
 integer :: iAm
 iAm = this_image()
 me = this_image(z)
 z = iAm
 sync all
 write(*,"('Hello from image ',i5,' (',i5,',',i5,')’,f10.3)") iAm, me,z[1,4]
 !write(*,"('Hello from image ',i5,' (',i5,',',i5,')’,f10.3)") iAm, me,z[2,4]
end program ex0

25

Synchronization and Memory Consistency

26

Synchronization
sync all

Full barrier; wait for all images before continuing.
sync images(list)

Partial barrier with images in list(:)
sync memory

Make local co-arrays visible.
critical

One image at a time
lock/unlock

Control access to a co-array variable
spin loops

Spin on a co-array until it changes

27

Hidden Sync’s

• Hidden sync all after variable declarations
• Hidden sync all after allocating a co-array
• Hidden sync all before deallocating a co-array
• Hidden sync all before end program

28

sync images()

if (this_image() == 1) then
 sync images(*)
else
 sync images(1)
end if

29

Examples

• Global reductions
• Matrix multiplication
• Halo exchange

30

Example 1: Global sum

31

Global Sum
subroutine globalSum(x)
real(kind=8),dimension[0:*] :: x
real(kind=8) :: work
integer n,bit,i,mypal,dim,me, m
dim = log2_images()
if(dim .eq. 0) return
m = 2**dim
bit = 1
me = this_image(x)
do i=1,dim
 mypal=xor(me,bit)
 bit=shiftl(bit,1)
 sync all
 work = x[mypal]
 sync all
 x=x+work
end do
end subroutine globalSum

32

Exercise 1: Global Sum

1. Write the function log2_images().
2. Remove the power-of-two assumption.
3. Convince yourself that two sync’s are necessary.
4. Rewrite with only one sync.
5. Rewrite using sync images.

33

Example 2: Matrix Multiplication

34

Matrix Multiplication

real,dimension(n,n) :: a,b,c

do k=1,n

c(i,j) = c(i,j) + a(i,k)*b(k,j)

end do

35

Matrix Multiplication

= x
myP

myQ

myP

myQ

36

Matrix Multiplication

real,dimension(n,n)[p,*] :: a,b,c

do k=1,n
 do q=1,p

c(i,j)[myP,myQ] = c(i,j)[myP,myQ]
 + a(i,k)[myP, q]*b(k,j)[q,myQ]

 enddo
enddo

37

Matrix Multiplication

real,dimension(n,n)[p,*] :: a,b,c

do k=1,n
 do q=1,p

c(i,j) = c(i,j) + a(i,k)[myP, q]*b(k,j)[q,myQ]
 enddo
enddo

38

Block Matrix Multiplication

39

program matmul
 implicit none
 real, allocatable,dimension(:,:), codimension[:,:] :: a,b,c
 integer :: i
 integer :: j
 integer :: k
 integer :: l
 integer,parameter :: n = 10
 integer :: p
 integer :: q
 integer :: iAm
 integer :: myP
 integer :: myQ
 p = num_images()
 q = int(sqrt(float(p)))
 iAm = this_image()
 if (q*q /= p) then
 if(iAm == 1) write (*,"('num_iamges must be square: p=',i5)") p
 stop
 end if
 allocate(a(n,n)[q,*])
 allocate(b(n,n)[q,*])
 allocate(c(n,n)[q,*])
 myP = this_image(c,1)
 myQ = this_image(c,2)
 a = 1.0
 b = 1.0
 c = 0.0
 sync all
 do i=1,n
 do j=1,n
 do k=1,n
 do l=1,q
 c(i,j) = c(i,j) + a(i,k)[myP, l]*b(k,j)[l,myQ]
 end do
 end do
 end do
 end do
 if (any(c /= n*q)) write(*,"('error on image: ',2i5,e20.10)") myP, myQ, c(1,1)
 write(*,"('check sum[',i5',',i5,']',e20.10)") myP, myQ, sum(c) - q*n**3
 deallocate(a,b,c)
end program matmul

40

Exercise 2: Matrix Multiplication

1) Remove the restrictions (n,n) and [q,q].
2) Change element-by-element to a block algorithm.
3) How many of these can you implement?

R.W. Numrich, Parallel numerical algorithms based on tensor notation and Co-Array
Fortran syntax, Parallel Computing 31, 588-607 (2005)

4) When is one better than another?

!

Cq = A Bq

Cq = ArBq

r

Cq

p
= Ar

p
Bq

r

C = ArB
r

Cq

p
= A

p
Bq

C
p

= A
p
B

C
p

= Ar

p
B
r

Sum over repeated indices

41

Example 3: Halo exchange

42

Incremental Conversion
 of the UKMet Climate Model to Co-Array

Fortran

• Fields are allocated on the local heap
• One processor knows nothing about another

processor’s local memory structure
• But each processor knows how to find co-arrays in

another processor’s memory
• Define one supplemental co-array structure
• Create an alias for the local field through the co-array

field
• Communicate through the alias

43

Co-array Alias to Local Fields

type field
real,pointer :: ptr(:,:)

end type field

real :: u(0:m+1,0:n+1,lev)
type(field) :: z[p,∗]

z%ptr => u
u = z[p,q]%ptr

44

Irregular and Changing Data Structures

z%ptr z%ptr

u
u

z[p,q]%ptr

45

Problem Decomposition and Co-Dimensions

 [p,q-1]

[p+1,q] [p,q] [p-1,q]

 [p,q+1]

EW

S

N

46

Cyclic Boundary Conditions
 East-West Direction

real,dimension [p,*] :: z
myP = this_image(z,1) !East-West
myQ = this_image(z,2) !North-South

West = myP - 1
if(West < 1) West = nProcEW !Cyclic

East = myP + 1
if(East > nProcEW) East = 1 !Cyclic

47

East-West Halo Swap

• Move last row from west to my first halo

 u(0,1:n,1:lev) = z[West,myQ]%ptr(m,1:n,1:lev)

• Move first row from east to my last halo

 u(m+1,1:n,1:lev)=z[East,myQ]%Field(1,1:n,1:lev)

48

Exercises

1. Write code for the North-South exchange.
2. Change the halo width to some value w≥1.
3. What happens if the sizes of the blocks on different

images are not equal?

49

Where Can I Try CAF?

50

CRAY Co-Array Fortran

• CAF has been a supported feature of Cray Fortran since release 3.1
• CRAY T3E

– f90 -Z src.f90
– mpprun -n7 a.out

• CRAY X1
– ftn -Z src.f90
– aprun -n17 a.out

• CRAY XT4/5
– ftn -hcaf src.f90
– aprun -n13 a.out

51

Open Source g95 compiler

• Andy Vaught has produced a co-array compiler.
• Download from

– www.g95.org/downloads.shtml
– www.g95.org/coarray.shtml

– ar -r libf95.a coarray.o
– g95 src.f90
– cocon -i4 a.out

52

Other Efforts

• Rice University is developing a compiling system for
CAF.

• University of Houston is developing a CAF compiler.
• IBM compiler and run-time system under

development.
• Intel compiler under development.

53

References

• John Reid, Coarrays in the next Fortran Standard (2009) ISO/IEC
JTC1/SC22/WG5 N1787

• J. Reid and R.W. Numrich, Co-arrays in the next Fortran Standard,
Scientific Programming 15(1), 9-26 (2007)

• R.W. Numrich, A Parallel Numerical Library for Co-Array Fortran,
Springer Lecture Notes in Computer Science 3911, 960-969 (2005)

• R.W. Numrich, Parallel numerical algorithms based on tensor notation
and Co-Array Fortran syntax, Parallel Computing 31, 588-607 (2005)

• R.W. Numrich and J.K. Reid, Co-Array Fortran for Parallel
Programming, ACM Fortran Forum 17(2):1-31 (1998)

• R.W. Numrich, J. Reid and K. Kim, Writing a Multigrid Solver Using Co-
Array Fortran, Springer Lecture Notes in Computer Science 1541, 390-
399 (1998)

• R.W. Numrich, F--: A Parallel Extension to Cray Fortran, Scientific
Programming 6(3), 275-284 (1997)

54

Total Time (s)

32.4

55.9

55.5

105

205

MPI

31.629.827.34x8

54.453.750.04x4

52.752.249.82x8

10099.095.02x4

2011981912x2

MPI
w/CAF
SWAP

 SHMEM
w/CAF
SWAP

SHMEMPxQ

55

CAF and Object-Oriented Programming
Methodology

56

Object-Oriented Programming combined
 with Co-Arrays

• Fortran 2003 is an object-oriented language.
– allocate/deallocate for dynamic memory management
– Named derived types are similar to classes
– Type-associated methods.
– Constructors and destructors can be defined to encapsulate

parallel data structures.
– Generic interfaces can be used to overload procedures

based on the named types of the actual arguments.

57

A Parallel Class Library for CAF

• Combine the object-based features of Fortran 95 with co-
array syntax to obtain an efficient parallel numerical class
library that scales to large numbers of processors.

• Encapsulate all the hard stuff in modules using named
objects, constructors,destructors, generic interfaces,
dynamic memory management.
– R.W. Numrich, A Parallel Numerical Library for Co-Array Fortran,

Springer Lecture Notes in Computer Science, LNCS 3911, 960-
969 (2005)

– R.W. Numrich, CafLib User Manual, Tech Report (2006)

58

CAF Parallel Class Libraries

 use BlockMatrices
 use BlockVectors

 type(PivotVector) :: pivot[p,*]
 type(BlockMatrix) :: a[p,*]
 type(BlockVector) :: x[*]

 call newBlockMatrix(a,n,p)
 call newPivotVector(pivot,a)
 call newBlockVector(x,n)
 call luDecomp(a,pivot)
 call solve(a,x,pivot)

59

LU Decomposition

60

Communication for LU Decomposition

• Row interchange
– temp(:) = a(k,:)
– a(k,:) = a(j,:) [p,myQ]
– a(j,:) [p,myQ] = temp(:)

• Row “Broadcast”
– L0(i:n,i) = a(i:,n,i) [p,p] i=1,n

• Row/Column “Broadcast”
– L1 (:,:) = a(:,:) [myP,p]
– U1(:,:) = a(:,:) [p,myQ]

61

 7 6 5 4 3 2 1

 3 5 2 7 1 4 6

 4 6 5 2 7 1 3

Vector Maps

62

 7 6 5 4 3 2 1

 6 3 5 2 7 4 1

Cyclic-Wrap Distribution

 7 4 1 5 2 6 3

63

Vector Objects

type vector
 real,allocatable :: vector(:)
 integer :: lowerBound
 integer :: upperBound
 integer :: halo
end type vector

64

Block Vectors

type BlockVector
 type(VectorMap) :: map
 type(Vector),allocatable :: block(:)
 --other components--
end type BlockVector

65

Block Matrices

type BlockMatrix
 type(VectorMap) :: rowMap
 type(VectorMap) :: colMap
 type(Matrix),allocatable :: block(:,:)
 --other components--
end type BlockMatrix

66

CAF I/O for Named Objects

 use BlockMatrices
 use DiskFiles

 type(PivotVector) :: pivot[p,*]
 type(BlockMatrix) :: a[p,*]
 type(DirectAccessDiskFile) :: file

 call newBlockMatrix(a,n,p)
 call newPivotVector(pivot,a)
 call newDiskFile(file)
 call readBlockMatrix(a,file)
 call luDecomp(a,pivot)
 call writeBlockMatrix(a,file)

67

Summary

68

Why Language Extensions?

• Programmer uses a familiar language.
• Syntax gives the programmer control and flexibility.
• Compiler concentrates on local code optimization.
• Compiler evolves as the hardware evolves.

– Lowest latency and highest bandwidth allowed by
the hardware

– Data ends up in registers or cache not in memory
– Arbitrary communication patterns
– Communication along multiple channels

69

Summary

• Co-dimensions match your logical problem
decomposition
– Run-time system matches them to hardware

decomposition
– Explicit representation of neighbor relationships
– Flexible communication patterns

• Code simplicity
– Non-intrusive code conversion
– Modernize code to Fortran 2003 standard

• Code is always simpler and performance is always
better than MPI.

70

sync images()

me = this_image()
ne = num_images()
if(me == 1) then
 p = 1
else
 sync images(me-1)
 p = p[me-1] + 1
end if
if(me<ne) sync images(me+1)

71

Proposed Synchronization

notify()/query()
Asynchronous split barrier

sync team(teamObject)
Synchronize within a subset of images.

collectives
co_sum, co_max, co_min, etc.

