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Muifio has used single-slit diffraction to provide an in-
troduction to the uncertainty principle suitable for an un-
dergraduate physical chemistry course (7). His article
provided both a theoretical analysis of single-slit diffraction
and a lecture demonstration of the phenomenon using
readily-available equipment. In the current research literature
Nairz and colleagues have confirmed the uncertainty prin-
ciple in a single-slit diffraction experiment with a beam of
C,y molecules (2). And, quite recently, a research team led
by Marcus Arndt and Anton Zeilinger performed multi-slit
experiments demonstrating wave-particle behavior for
tetraphenylporphyrin and a fluorinated fullerene, CgoFyq (3).
The significance of these results is that tetraphenylporphyrin
is an important biomolecule and CgF g is the most massive
particle to demonstrate wavelike properties to date.

The purpose of this short article is to provide an alter-
native theoretical analysis of single-slit diffraction based on
the Fourier transform between coordinate and momentum
space. This approach was recently used by Marcella (4) to
analyze single- and double-slit diffraction and has been ex-
tended by the author to more complicated slit geometries (5).

Quantum experiments have three parts: (i) state prepa-
ration; (ii) subsequent measurement of an observable; and
(iii) theoretical interpretation of experimental results. In dif-
fraction experiments, passage through the slit screen repre-
sents a position measurement that establishes the state of the
system in coordinate space. The coordinate-space wave func-
tion for a photon or massive particle that has passed a screen
with a slit of width w centered at x = 0 is

0 for x < Y
W(xw)— L for —stsZ
0 for x > il

The quantum mechanical interpretation of diffraction is that
the physical property recorded at the detection screen is the
momentum distribution of the diffracted particle.

A Fourier transform of W(x, w) into the momentum rep-
resentation yields the momentum-space wave function

21 z'pxx> 1
(I) , = — _d
(7 ) f NET) exP( v ) Jw
2
. (pew )
2_ﬁ sm< 2h>

nw Pe

where p, is the x-direction momentum. Thus, according to
quantum mechanics, the diffraction pattern observed is the
square of the absolute magnitude of the momentum wave

function, |®(p,, w)| This is shown in Figure 1 for two slit
widths.
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Figure 1. Momentum distribution at the slit screen for slit widths of
0.5 and 1.0 ag (1 ap = 52.9 pm).

The uncertainty principle is clearly revealed—the nar-
row slit produces a broader momentum distribution. In other
words, localization in coordinate space leads to delocaliza-
tion in momentum space. However, we can also treat this
effect in a more quantitative manner.

Following Muifio we will assume that the uncertainty
in position is the slit width, w. The uncertainty in momen-
tum is defined as half the width of the momentum distribu-
tion of the central diffraction band (2). As the momentum
distribution is zero for
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it is easy to show that using this criterion the uncertainty in
momentum is 277/ w. Therefore, the product of the uncer-
tainty in position and momentum is greater than 7/2 as re-
quired by the uncertainty principle.
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The Fourier transform connecting complementary ob-
servables is ubiquitous in quantum theory (and, of course,
in our laboratory instruments). Here the transform between
position and momentum has been used to illuminate the in-
timate relationship between single-slit diffraction and the
uncertainty principle.
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