
Variation Calculation for a Particle in a Gravitational Field
                        in Momentum Space

The following problem deals with a particle of unit mass in a gravitational field with acceleration due to
gravity equal to 1.
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Fourier the position wave function into momentum space:
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Demonstrate that the momentum wave function is normalized.
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Energy operator in momentum space: p2
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Evaluate the variational expression for the energy:
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Minimize energy with respect to variational parameter α:

α 1:= α Minimize E α,( ):= α 1.145= E α( ) 1.966=

This momentum space result is in exact agreement with the coordinate-space result. The exact value for the
energy is 1.856.
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