
It has been noted frequently that it is very difficult forun- 
dergraduates to come to grips with the fundamentals of 
auantum theow. Undoubtedlv. this difiicultv is related to the 
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fact that there are not very many examples df meaningful, yet 
simnle. auantum calculations that can bs performed by un- 

A Simple Hartree SCF Calculation on a 
One-Dimensional Model of the He Atom 

. . .  
dergraduates. Like many other activities, & is easier to learn 
quantum chemistry if you actually do it. This situation has 
been improved recently by the publication of several papers 
in this Journal oritlining calculations of varying complexity 
which can he performed by undergraduates and which illus- 
trate important computational methods in quantum chem- 
istry (1-3). In this paper we present a numerical self-consis- 
tent field calculation on a one-dimensional model for the he- 
lium atom appropriate for a typical undergraduate level course 
in physical chemistry. We have chosen a one-dimensional 
model so that mathematical complexities will not obscure the 
fundamental principles of the numerical SCF method. Similar 
calculations for two particles in a one-dimensional box have 
been described by Boleman (4 ) .  

Numerical calculations in quantum chemistry generally are 
not discussed in physical chemistry texts or elementary ex- 
positions on quantum chemistry. This omission is unfortunate 
because numerical calculations have both historical and 
contemporary significance. In addition numerical solutions 
are general and can be used in those cases for which analytical 
solutions are either very difficult to obtain or are unohtain- 
able. Numerical methods also have the added advanta~e that - ~ ~ ~ -  - ~~ ~ ~~ 

they keep physical principles directly before the student be- 
cause thev emohasize the critical role of boundary conditions " .  
in quantum mechanical problems. 

The Model 
The one-dimensional notential well shown in Fieure 1 will " 

he used as a model for the electron-nucleus electrostatic in- 
teraction of the helium ion and atom. For positive values of 
x (the position of the electron relative to-the nucleus) the 
electron-nucleus interaction is -2Ix. For x less than zero the 
potential energy is set at infinity. 

In the proposed exercise the students warmup by numeri- 
cally integrating the Schrodinger equation for the one-di- 
mensional helium ion. This calculation is very simple and 
serves as an introduction to the technique of numerical inte- 
gration. It also serves as an aid to understanding the somewhat 
more complex SCF calculation. 

The Hellum Ion 
On the basis of the model of Figure 1, the Schrodinger 

equation for He+ is 

[-%d2/dzZ - 21x1 Y(x) = E Y(x) (1) 

The analytical solution (5) of this equation is straightforward 
and yields the following normalized wavefunction and 
ground-state energy. 

Y(x) = a x  exp(F2x) 

To facilitate numerical integration of Schrdinger's equa- 
tion it is re-written as 
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Figure 1. Onedimensional model of llw electron-nucleus interaction in He+ and 
Hfl. Energy in hanrees and distance in bohrs. 

Figure 2. Summary 01 numerical integration of SchrWinget's equation for He+. 
Energy in hartreas. 

At this point an algorithm for integration must be chosen 
and Euler's method is recommended because of its simplicity. 
I t  is described briefly in Appendix A. Since the primary goal 
of this exercise is to introduce the numerical SCF method 
Euler's method is adequate, although the students should be 
made aware of its limitations (6). 

The results of the numerical integration of eqn. (2) using 
Euler's method are summarized in Figure 2 for the ground 
state of the He atom. After completing the numerical inte- 
gration the students are asked to compare their results with 
the analytical solution for He+. 

The Hellum Atom 
For the atom there are two electrons in the potential well, 

and it is assumed that they interact through a truncated 
coulombic potential of the form 

The truncation parameter, A, is introduced to prevent the 
mathematical of Vlz  becoming infinite when XI= xa  
The Schrodinger equation for this model of the helium atom - - 

is 
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Due to the presence of the electron-electron interaction term 
which involves the coordinates of electrons 1 and 2, eqn. (4) 
cannot be solved exactly. Hartree (7) suggested that the 
two-electron Schriidinger equation could he approximated 
by two one-electron equations of the form (see appendix B) 

I-% d2/driP - 21s: + VIZ (xi)] Yi(xi) = ~j Yi(xi) (5) 
where 

V12(2i) = J- - Y,2 (Xi) dxj 
o lxi-xil +A 

and s is the enerw of the it" electron. Thus. we see that for the 
He atom the ~ & e e  SCF method asaumesthat the individual 
electrons are moving in the field of'the nucleus and an addi- 
tional field which represents the average effect of the other 
electron. Approximation of the instantaneous electron-elec- 
tron interaction by an average does not adequately take into 
account the fact that electrons, having the same charge tend 
to correlate their motions. This interaciion introduces error 
in the determination of the ground-state energy which is called 
the correlation energy. 

T o  facilitate integration eqn. (5) is re-written 

Notice that to solve the Hartree equation for 61 and Y1, it is 
necessary to know the wavefunction for electron 2, Yz. Simi- 
larly, to obtain €2 and Yz, it is necessary to know Y1. The crux 
of the Hartree SCF calculation lies, therefore, in making an 
initial guess (see appendix C) for Yz and using i t  to obtain €1 

and Y1 by numerically integrating eqn. (7). Y1 is then used to 
get an improved Y2 and so on until the calculation is self- 
consistent. Because the electrons in the helium atom are as- 
sumed to occupy the same spatial orbital, the calculation is 
considered to be self-consistent when YI = YZ and e l =  62. The 
diagram in Figure 3 summarizes the algorithm for the nu- 
merical SCF calculation on the one-dimensional helium atom. 
Further details on the use of houndary conditions are pre- 
sented in Appendix A. 

For this exercise the students are presented with the fol- 
lowing subroutines: 

1) A subroutine which calculates the initial guess for the wave- 
function (see Appendix C). 

2) A subroutine which evaluates the ootential enerw inteeral in ... .. 
eqn. 17). V l r ( x l ) ,  using Simpson's method. 

3) A suhroutine which normalizes a wavefunrtion using Simpaon'r 
method. 

4) A subroutine which uses Simpson's method to evaluate the final 
eleetron-electron potential energy integral in eqn. (8). 

The students are then asked to use these subroutines plus the 
oromam they wrote to intemate Schriidineer's eauation to out 
together a main program &at carries outthe SCF calculaiion 
as outlined in the flow chart of Figure 3. 

The SCF calculation was performed on a HP-2000 series 
computer which carries six or seven significant digits. The 
programming language was BASIC and a typical calculation 
required an hour of terminal (time-share) time. The pro- 
gramming and the calculation can be completed easily in one 
4-hr laboratory period. The results of the calculation are 
summarized in Figure 4 and Tables 1 and 2. 

Table 1 shows that i t  required eight iterations to achieve 
self-consistency. The criteria for self-consistency were that 
the houndary conditions he satisfied and that the one-electron 
energies he equal to four significant figures. Figure 4 compares 
the electron density, Y2, for the He+ ion with the one-electron 
SCF density for the He atom. This figure shows graphically 
the effect of placing a second electron into the potential well. 
For distances from the nucleus less than 1 bohr, the one- 
electron density in the atom is less than in the ion. For dis- 

492 1 J m l  of Chemical Education 

FLOW CHART 

STORE W. F. FOR ELECTRON 2 
IN ARRAY Y2 

1 
,USE Y2 TO CALCULATE V12(X1) FOR 

ALL X1 AND STORE IN ARRAY V1 

I 
INPUT ENERGY GUESS - 

FOR ELECTRON 1 

I 
INTEGRATE HARTREE E UATION TO 

OBTAIN Y i  THE W.F. FoR%LEcTRoN 1 

NORMALIZE Y1 AND PRINT OUT 

DOES W.F. SATISFY BOUNDARY CONDITION? 

STORE Y1 IN Y2 

-IS CALCULATION SELF-CONSISTENT? 

CALCULATE THE GROUND-STATE ENERGY 
AND LP. AND PRINT OUT ONE-ELECTRON 

ENERGY AND SCF WAVEFUNCTIONS 
Figure 3. Algorimm fw SCF calculation an the 1-D He atom. 

Figure 4. Comparison of oneelectron probability densities tor He+ and He. 

tames greater than 1 bohr the one-electron density is greater 
in the atom than in the ion. The presence of the additional 
electron reduces electron density near the nucleus and in- 
creases it for positions more distant from the nucleus. 

The ground-state energy of the helium atom is twice the 
one-electron energy minus the average electron-electron po- 
tential energy. 



Table 1. Convergence of One-Electron Energiess 

Iteration One-Elernon Energy 

1 €1 = -0.8847 
2 EZ = -0.8329 
3 E, = -0.8501 
4 E2 = -0.8445 
5 El = -0.8461 
6 E2 = -0.8454 
7 El = -0.8458 
8 E2 = -0.8458 
9 El  = -0.8458 

E n e t g l  in m a .  1 ha* = 27.19 e.v. 

Table 2. Summary olthe SCF Calculatlona 

The He+ Ion G-ound-State Energy -1.9950 
SCF One-Electron Energy -0.8458 
The Elecbon-Elernon PE 1.1178 
The He Atom Ground-State Energy -2.8094 
The He Atom 10nization.Energl 0.8144 

a Erwm in hamees. 

EHe = 2e - L-i- YAXI) Yz2(xz)  XI dxz 
1x1 - ~ 2 1  + A  

The  electron-electron potential energy is subtracted because 
i t  is contained in the oue-electron energies, c, and, therefore, 
not t o  subtract i t  would he t o  count i t  twice. T h e  H e  atom 
ionization energy is obtained by subtracting the ground-state 
enerm for the atom from that  of the  ion. 

 he energy calculations depend on the value chosen for the 
truncation parameter, A. A value of 0.5 yielded the results 
summarized in Table 2. This value was chosen because i t  
yielded a ground-state energy which was reasonably close t o  
the rorrert value for the thrk-dimensional helium-atom. In 
addition to the calculations ( d i n e d  above, one may want to 
discuss with the students the relationshine hetween the SCF 
one-electron energies, the ionization energy, and Kwpmans' 
approximation ( I ) .  

Conclusion 

We believe that  the exercise outlined here is of the type that  
will help to "bridge thegap between the formalism of quantum 
theory and its computational aspects" (3). The  calculations 
are conce~tual lv and mathematicallv s i m ~ l e  and insure t ha t  
the student wili get a clear picture df t h e ' S ~ F  method. Also 
the exercise introduces students to imvortant numerical 
techniques which they are unlikely t o  otherwise encounter in 
their first exposure t o  quantum chemistry. We also believe 
tha t  this calculation serves as an  important complement t o  
the analytical SCF calculation of Snow and Bills ( I ) .  

A listing of the suhroutines which are given t o  the students 
plus a listing of the complete program will be provided by the 
authors upon request. 

Appendix A-Euler's Algorithm 

If Y(xd and YYxd are known the value of Y(xo + A) can be de- 
termined approximately using the definition of the first derivative. 

Y(x) = Y(xo) + Y1(xo) ( x  - xo) A1 

where x = xo + A. Using the definition of the second derivative 
Schrodinger's eqn. (2) can be re-cast as 

Equations A1 and A2 are employed in an iterative algorithm to find 
solutions (E and Y) far eqn. (2). 

This solution is accomplished by using one boundary condition to 
make intelligent guesses for Y(xo) and Y'(xo). For He+, for example, 
Y(0) = 0 because the potential energy goes to infinity at this point. 
Y'(0) is pwitive and can be given some reasonable value, say 5. At this 
point a guess far the energy is made and the iterative process em- 
ployed. Equation A1 is used to calculate Y(Q + A) andA2 is used to 
determine a new slope YYxo + A). Then A1 isused to calculate Y(xo 
+ 2A) and A2 is used to get a new slope Y'(xo + 2A) and so on. If the 
wavefunction satisfies the second boundary condition, Y(m) = 0, the 
energy guess, E ,  represents the energy eigenvalue. If not, a new guess 
is made and the process described above is repeated. Figure 2 illus- 
trates how the second boundary condition is used to bracket the 
correct energy eigenvalue. 

In the calculations described here "infinitv" was taken to he 5 hohr 
for He* and : hohr for He.'l'he increment wasset at 0.05 for He* and 
0.1 for He. A BASIC prcqmmronaistingof 18steps wa*uaed to intc. 
grate eqn. (2). 

The choice of increment is determined by three considerations: (1) 
algorithm accuracy (Euler's method is m b t  accurate far small in- 
crements); (2) computer round-off error; and (3) computing time (6).  
Extremely small increments can lead to significant round-off error 
and consumption of large amounts of computer time. The increment 
of 0.1 for the He atom calculation was dictated bv considerations of 
nmputing time. The numerirnl rvnluntion of the rlec~ramelec~mn 
putenrlal enerm integral, eqn. (61,  is tmt. n,nsun~ing.'l'hus, a rather 
large increment was used to keep time demands within reason. In the 
He+ ion calculation time is not a constraint and an increment of 0.05 
was chosen because it gave reasonable accuracy. 

Several algorithms, more accurate than Euler's method, have been 
discussed in the literature (8-11). The finite difference algorithm 
described by Bolemon (21) is particularly well-suited to SCF ealeu- 
lations. 

Appendix B-Hartree's Approximation 

Assuming that the twa-electron wavefunction Y(1,2) can be written 
as a product of two normalized, one-electron wavefunctions, Y(l)Y(2), 
Schrodinger's eqn. (4) can be written as, 

[?I + ?2 + GNI + c N 2  + k12] Y(1)Y(2) = E Y(1)Y(2) C1 

Multiplication on the left by Y(2) followed by integration over the 
coordinates of electron 2 yields after rearrangement, 

where 

(VNZ) = x e ~ ( 2 ) l i k 2 1 ~ ( 2 ) d ~ z  

Identifying [E - ( T d  - ( V N ~ ]  as the orbital energy of electron one, 
€1, yields Hartree's eqn. (5). 

Appendix C-Initial Wavefunction Guess 

The analytical solution for the one-dimensional hydrogen atom with 
V = -l/x is Y(x) = fir cap(-x). Since the electrons in the He atom 
will experience an effective nuclear charge less than +2 but greater 
than +1, a reasonable first guess for the wavefunction would be some 
normalized function intermediate between the H atom function and 
the He+ ion function. We chose Y(x) = J F i x  exp(-1.5 r). 
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