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The rotational specific heat of molecular hydrogen
in the old quantum theory

“Astonishing successes”  “Bitter disappointment”
--Fritz Reiche, 1921
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Rigid Rotator (Rotating dumbbell) 

Specific heat of H2 Molecular spectra

• The rigid rotator was among the earliest problems taken 
up in the old (pre-1925) quantum theory.

• The problem should have been simple

• relatively uncomplicated theory

• only one adjustable parameter (moment of inertia)

• Nevertheless, no accurate theoretical description 
emerged in the old quantum theory

• Today:  indistinguishable particles applied to wave 
function symmetry central to explanation

References:

Chiyoko Fujisaki, 
Historia scientarum 24, 
53–75 and 25, 57–86 
(1983)

Alexi Assmus, Historical 
Studies in the Physical and 
Biological Sciences 22, 
209–231 and 23, 1–34 
(1992)

rotation-free 
states forbidden!
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Modern Quantum Mechanics

Consider a hydrogen molecule (rigid rotator —two degrees of freedom)

• The two nuclei (protons) are identical fermions (spin 1/2)

• total nuclear spin/rotational wave function must be anti-symmetric

⇒  There are therefore two varieties of molecular hydrogen: 

parahydrogen

•  singlet nuclear state (anti-symmetric) ⇔ symmetric rotational state (n even)

orthohydrogen

• triplet nuclear state (symmetric) ⇔ antisymmetric rotational state (n odd)

orthohydrogen  ⇔ parahydrogen transition is slow
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Modern Quantum Mechanics
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parahydrogen

To calculate the specific heat of molecular hydrogen:

• Treat  hydrogen as a (weakly interacting) mixture of para- and ortho-
hydrogen, in the ratio 1:3  (room temperature ratio).

specific heats of para- and orthohydrogen are quite different at 
low temperatures

orthohydrogen

If one combines these two curves in the ratio 1 part para to 3 parts 
ortho, one obtains a smoothly decreasing curve that agrees well with 
experiment.
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Theory and Experiment by the late 1920s

modern QM theory
(David Dennison, 
1927)
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Specific Heat of Hydrogen:  Widely investigated in 
the old quantum theory

Some of the more prominent physicists and physical chemists who worked on the 
specific heat of hydrogen.

I will be particularly interested in the work of Fritz Reiche in Germany, and 
Edwin C. Kemble in the U. S. in the years around 1920.

Nernst Lorentz Eucken Einstein Ehrenfest Bohr

Planck Reiche Kemble Tolman Schrödinger Van Vleck

Our story begins with 
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Nernst’s Heat Theorem

Walther Nernst
1864 – 1941

•  physical chemist

• studied with 
Boltzmann

• 1889:  lecturer, then 
professor at 
Göttingen

• 1905:  professor at 
Berlin

Nernst formulated his heat theorem (Third Law) in 1906, shortly after appointment 
as professor in Berlin.
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Nernst’s Theorem and Quantum Theory
• Initially, had nothing to do with quantum theory.  

• Understand the equilibium point of  chemical reactions.

• Nernst’s theorem had implications for specific heats at low temperatures.

• 1906–1910: Nernst and his students undertook extensive measurements of 
specific heats of solids at low (down to liquid hydrogen) temperatures.  

“... one gets the impression that the specific heats are converging to 
zero as required by Einstein’s theory.”  (Nernst 1910) 

• Einstein in 1907:  If one treated a solid as a collection of quantized harmonic 
oscillators, the specific heat should go to zero as T → 0.

• As a result, Nernst became an enthusiastic promotor of quantum ideas.

Nernst’s data (February 1911)

... Nernst, who rescued all the 
results pertaining to this ques-
tion from their theoretical 
limbo...

Einstein (1911)
(Solvay  Conference)
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The specific heat of molecular hydrogen

• Inititially, Nernt’s Heat Theorem applied only to solids and liquids

• Early in 1911, Nernst speculated that the rotational (and for diatomic gases, vibra-
tional) degrees of freedom for gases might show quantum behavior.

• Because of its low mass and low liquification temperature,  

...  The determination of the specific heat of hydrogen at low 
temperatures would therefore be especially interesting.  (Nernst 
1911)  

Arnold Eucken was one of Nernst’s assistants, and 
had been closely involved in the measurements of the 
specific heats of solids.

In 1912, he packed about 0.2 moles of H2 into a 39 

cm3 thin-walled steel chamber (pressure about 100 
atm!), measured the specific heat down to about 30K.

 Both the experiment and the data reduction were 
difficult.  Eucken found ...

Arnold Eucken
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Eucken’s Data

equipartition value

Eucken attempted to fit these data to Einstein’s 1907 result for the specific heat of solids.
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more data
1913:  Karl Scheel and Wilhelm Hause, working at the Physicalisch-Techniche 
Reichsanstallt just outside Berlin, using the impressive-looking apparatus shown below 
(“Method of Constant Flow”), measured the specific heat of H2 at three temperatures, 
as part of a more general program of measuring specific heats of gases.

“The specific heats of helium 
and several diatomic gases”

Annalen der Physik, 1913
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data in 1913

Note two 
overlapping 
points
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And Now, The Theory

Quantum Theory of the Rigid Rotator
Applied to the specific heat of hydrogen

Stages

1.   The unquantized rotator:  Nernst, Einstein, and Otto Stern, 1911–1913

2.   Quantized rotators with one degree of freedom:  Lorentz, Paul Ehrenfest, Erik Holm, others; 
1913–1916 or so

3.   Quantized rotators with two degrees of freedom:  Max Planck, Fritz Reiche, Edwin C. Kemble, 
Niels Bohr, others; 1915–1925

 Molecular spectra became increasingly important 

•    First, vibration-rotation spectra (e.g., HCl)

•    Later, vibration/rotation transitions in electronic spectra of H2 (extremely complex, 
with thousands of lines); allowed for the independent measurement of the moment 
of inertia

4. Modern quantum mechanics:  John Van Vleck, Friedrich Hund, David Dennison, others; 1926 
on
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Nernst, February 1911 
“Towards a theory of specific heats and on the application of the doctrine of energy 
quanta to physical chemical questions in general” 

Zeitschrift für Electrochemie, 1911

Einstein on Nernst:

Nernst’s standard work, “Theoretical Chemistry,”offers, not only to the student but also 
to the scholar, an abundance of stimulating ideas; it is theoretically elementary, but 
clever, vivid, and full of intimations of manifold interrelations.  It truly reflects his 
intellectual character.

Einstein (1942)

In the following I would like to communicate the views of Einstein in a somewhat 
different form, and to be sure I will derive Einstein's formula not deductively from the 
general principles of statistical mechanics, but on the contrary through the direct 
calculation of a special simple case, through which I hope to formulate the views 
transparently and visually.

Nernst 1911
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Nernst and specific heats:  February 1911

Nernst reviewed his results for the specific heats of solids; but the 1911 paper is as much about 
gases as about solids.

Nernst began by pointing out problems with equipartition in monatomic and diatomic gases:

• monatomic gases:  no rotational degrees of freedom.  The theory furnishes not even a 
clue ...

• diatomic gases:  value 5/2 R is ok for most gases, but halogens have considerably higher 
values, and the specific heats of all gases increase at higher temperatures. 

The theory can account for a new degree of freedom, as in the oscillation of an atom 
around its equilibrium position, but the gradual emergence of a new degree of 
freedom  is (without new arbitrary assumptions) entirely senseless.
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Nernst and specific heats:  February 1911

Since we at first disregard the quantum theory and make the assumption, that the kinetic 
energy of the Schwingungskreise projected on a plane ...  sits in equilibrium with the kinetic 
energy of the gas molecule projected on the same plane, we arrive at the second 
consequence, that in both cases the same distribution law obtains.  

That distribution turns out to be the Maxwell-Boltzmann velocity (not speed) distribution.  
Nernst applies the Maxwell-Boltzmann distribution to a solid.   He then assumes that a gas 
molecule which crashes (anprallt) onto a rotating atom is able to take on or withdraw only 
the energy quantum

0

R
h

N
ε ν βν= =

Nernst then supposes that the MB distribution is replaced by a stepwise one, and uses this 
approach to derive Einstein’s result for the specific heat of a sold.   

Nernst first considered a mass point oscillating in a solid, and attempted to treat its three 
degrees of freedom:

we can so visualize the motion of a point, that we project its path onto three mutually 
perpendicular planes, whereby we obtain three "oscillation circles" 
["Schwingungskreise"].  
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Nernst and specific heats:  February 1911

We have seen above, that a departure from the laws of statistical mechanics then emerges, if 
one concerns oneself with the rotation of atoms around an equilibrium position.  If we make 
the certainly obvious generalization of the quantum hypothesis, that energy always will be 
absorbed only in fixed quanta not only for an oscillation about an equilibrium position, but 
also for an arbitrary rotation of masses, then we arrive at the wider conclusion that certain 
contradictions of the old theory may perhaps be clarified.  It will for example be 
understandable, that a molecule of a monatomic gas may take on no noticeable rotational 
energy, since because of the smallness of the dimension of an individual atom, such a rotation 
could be identified with a Schwingungskreis of very high frequency.

We thus have an odd situation:

• Unlike an oscillator, a rotator has no fixed frequency.

• In Nernst’s theory, a diatomic gas molecule exchanges rotational energy in fixed (harmonic 
oscillator) quanta (in collisions with a Schwingungskreis?  with other molecules??).  rotation fre-
quency of molecule =  frequency of oscillator?

• Nevertheless, neither the rotational velocity nor the energy is quantized.  

• comment on rotational energy of a monatomic gas molecule is particularly hard to understand.

• Nernst notes that although the rotational velocities will be given by a MB distribution, he takes 
as a first approximation a constant rotational velocity equal to the square root of the tempera-
ture (equipartition result)!  Einstein pointed out the inconsistancy at the first Solvay conference.

Rotational motion:
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Nernst and specific heats:  February 1911
Through this chain of reasoning, Nernst writes the following results:

3
1T

W R
e
βν

βν
=

−

2

23

1

T

T

e
dW TR
dT

e

βν

βν

βν⎛ ⎞⎟⎜ ⎟⎜ ⎟⎝ ⎠
=
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2
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T
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e

T e T e
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Nernst’s result for the average 
energy of a collection of quantized 
oscillators

derivative ⇒ Einstein’s 
result for the specific heat

equipartition result, 
substituted into W

derivative now leads to

Nernst’s result for the specific 
heat per degree of freedom of a 
diatomic molecule.

Nernst concludes this section by showing that this expression leads to the expected result 
(rotational contribution to specific heat = R) for oxygen molecule at room T .
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First Solvay Conference  (Nov 1911):  Nernst
At the first Solvay Conference in November 1911, Nernst repeated his February derivation of 
Einstein’s specific heat result, but said comparatively little about gases.

• “Schwingungskreis” did draw some fire—how e.g. can energy be decomposed into compo-
nents (Lorentz)?; led to discussion of multiple degrees of freedom 

• Nernst did refer to his February paper, but otherwise made only a few brief allusions to the 
specific heats of gases.

• In the discussion after his talk, in an exchange with Poincaré, Nernst did say:

The variable frequency ν [of rotation] is determined by the rotational energy and the 
dimensions of the molecule.  The difficulties that stand here in the way of the application 
of quantum theory are very substantial.

However ...
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First Solvay Conference:  Einstein
Einstein devoted a short section to the rigid rotator in his talk:

• several letters suggest an earlier interest in this problem, and in talk, he said

I tried to solve this problem, but did not succeed because of mathematical difficulties.

• Then, adopted a sanitized version of Nernst’s model:

If, with Nernst, we assume for the sake of simplicity that all molecules of the diatomic 
gas being considered have a definite angular frequency ν, which is the same for all 
molecules, then the relation between the rotational energy E, the frequency, and the 
temperature will not differ substantially from the corresponding relation for the linear 
oscillator.  We have approximately

1
h
kT

h
E

e
ν

ν
=

−
... we must assume in accordance with mechanics

( )2
1

2
2

E I πν=

These two equations contain the relation between E and T we have been looking for; all that 
remains is to eliminate ν

He added in a footnote:

Instead of the second of these relations, Nernst assumed the relation  .
But this relation could only be satisfied if the specific heat were independent of the 
temperature.

βν a T=
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First Solvay Conference:  Einstein
Einstein said nothing about Nernst’s conceptual framework, nor about how he was interpreting 
these equations.

Earlier, Einstein had pointed out that a 
monatomic gas molecule could not be 
treated in this way, and added

We thus see that we should greet with 
skepticism each new application of the 
method of deducing the thermal 
properties of matter from the 
radiation formula.

There was one more contribution to the discussion: 

Einstein:

• Assume all rotators have same rotational 
frequency

• Equate rotator kinetic energy  to average 
kinetic energy of a Planck “resonator” 
(harmonic oscillator) with same frequency

The rotator is not actually quantized.  Does 
it nevertheless absorb/give off quanta hν ?

( )2 /

1
2

2 1h kT

h
J

e ν

νπν =
−
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First Solvay Conference:  Lorentz

Lorentz:

Quantize the rotator energy directly (com-
ment following Einstein’s report):

J = moment of inertia

ν  = frequency of rotation

But then, this remark is of no great 
significance.  When applying the 
hypothesis of energy elements, one can 
confine oneself to systems for which a 
definite frequency determined by the 
nature of the process is given in advance.

Quantizing the rigid rotator 

Both suggestions were pursued.

( )2
1

2 , 0,1,2...
2
J nh nπν ν= =
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Einstein and Otto Stern, 1913
 

( )2 / 2
1 2
2 1h kT

hhJ
e ν

ννπν +=
− zero-point 

energy

“Some arguments for the Assumption of Molecular Agitation at Absolute Zero”

“Planck’s first theory:”

• Quantized energy levels

• No zero-point energy

“Planck’s second theory:”

• Continuous energies

• Quantized energies emitted when res-
onator is on the boundary of a finite 
phase-space cell

• Quantized energy replaced by the 
average energy  within a finite phase-
space cell.

 ⇒ leads to “zero-point energy” of sorts

Otto Stern

Stern did his Ph.D. 
with Otto Sakur in 
Breslau in 1912.  
Sakur had worked 
with Nernst, and 
published a  series 
of papers (“Sakur-
Tetrode equation”) 
on quantizing the 
monatomic ideal 
gas.

... [the specific heats] are equivalent for structures with 
unchanging ν, whereas the theory of those structures whose ν 
has different values for different states is substantially 
affected by the assumption of a zero-point energy. 
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Einstein and Stern, 1913

zero-point 
energy

Einstein and Stern say nothing about the physical picture that underlies this equation.  Note 
however that:

•  “for the sake of simplicity”  the rotational speed is the same for all molecules

• interest is as much about the harmonic oscillator and Planck’s two theories as it is about 
the specific heat of hydrogen.

• rotator frequency   and energy are continuous functions of temperture!  The rotators 
are not quantized, but do rotate at the frequency of the oscillator.

•  is nevertheless not “classical”—as Nernst’s was.  In particular, for the zero-point 

case, ; so rotator also has zero-point energy.

• rotator presumably absorbs/emits resonator quanta when interacting with a resonator.

ν T( )

ν T( )

( ) 20 / 0T Jν π= = ≠

dE/dT  gives the specific heat; one solves (numerically) a transcendental equation to find ν T( )

Aside:  In same paper, they give a 
derivation of Planck radiation law 
that assumes no discontinuities.  But 
zero-point energy is hν,  not  hν /2.

... the thermal energy of every structure depends 
on the temperature in the same way as that of the 
resonators in Planck’s theory does.

Einstein,“Max Planck as Scientist,” 1913

( )2 / 2
1 2
2 1h kTE

hhJ
e ν

ννπν= +=
−
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Einstein and Stern: Results

Zero-point energy

no zero-point energy

In spite of what Einstein and Stern called “splendid agreement” for the zero-point 
motion result, Einstein soon lost confidence in this calculation, and it vanished 
from sight.   By the end of 1913, in a letter to Ehrenfest (V, 481), Einstein pro-
nounced zero-point motion “dead as a doornail” (“maustot ist”).

Kein Teufel weiss warum and nach welchem Gesetz.
Einstein on Eucken’s data, summer 1913, notes of Walter Dällenbach (CPAE 4)

Nevertheless, this work inspired another calculation by ...
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Theory: Quantizing the rigid rotator
Paul Ehrenfest, 1913

It is at any rate worth pointing out, that the snuggling up 
[Anschmiegen] [of a specific heat curve] to the horizontal 
axis at T = 0, to infinitely high order, may be produced 
entirely without the introduction of a zero-point energy.

“Remark concerning the specific heat of diatomic gases” 
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Ehrenfest’s calculation of the specific heat
Three Steps:

1.   Calculate energy of a rotator:  Ehrenfest, following Lorentz, quantized the rotators

( )2
2

1
2 , 0,1,2...

2
h

J n n
ν

πν = =

( )
2

2 2
2

1
2

2 8n
h

J n
J

ε πν
π

⇒ = =

Ehrenfest noted enigmatically that his factor of 2

... may be demonstrated from a very general point of view.

Adiabatic hypothesis!  See for example Klein, Ehrenfest.

Ehrenfest did not call attention to the sharp difference in approach
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Ehrenfest’s calculation of the specific heat
1.   Calculate energy of a rotator:  

2.   Calculate the dependence of the specific heat on temperature:

2
2

28n
h

n
J

ε
π

⇒ =

0

/n

n

kTQ e ε
∞

=

−=∑

( )2 2
2

2 2

ln
,

8R

d Q h
c Nk

d JkT
σ

σ σ
σ π

= =

Aside:  Einstein would have 
found it straightforward to 
have adopted this technique.
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Ehrenfest’s calculation of the specific heat

1.   Calculate energy of a rotator:  

2.   Calculate the dependence of the specific heat on temperature:

3.   Take into account both rotational degrees of freedom:

The sum Q and the specific heat are not easy to calculate (series converges slowly for large 
σ ); Ehrenfest used a Jacobian theta function to get around this problem.   He  found ... 
  

2
2

28n
h

n
J

ε
π

⇒ =
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2

2 2
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,
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2

2
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R
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σ
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/n kTQ e ε
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−=∑
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Ehrenfest’s result

Specific heat (cal/mole-K) vs absolute Temperature

Einstein-Stern
(Planck II)

Ehrenfest
(Planck I)

Ehrenfest noted the peak in the specific heat curve, but did not say 
much about it.
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Erik Holm and Planck’s Second Theory

Ehrenfest
(Planck I)

Holm
(Planck II)

Later in 1913, Erik Holm used Ehrenfest’s calculational methods, but Planck’s second 
theory (continuous energies, zero-point energy) to find the specific heat:

Jan von Weyssenhoff, a student of Simon Ratnowski (Privatdocent in Zürich), published a similar 
theory in 1916,  in which he investigated paramagnetism as well as the specific heat of H2.

Swedish; 
former 
mining 
engineer; 
Ph.D. 
thesis
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Planck and the physical structure of Phase space

In 1906, Max Planck showed that his one-dimensional “resonators” 
could be described by a “surface”  of constant energy in “phase space,” 
a graph of momentum p vs. position q.  

2
21

Energy 
2 2
p

U kq
m

= = +

path of constant energy is an ellipse in phase space

If U = nhν then the area of a finite  “cell” (grey 
area) in phase space is Planck’s constant.  Plank 
called these cells “elementary domains of 
probability.”

This area of a cell is proportional to the 
probability of finding an oscillator in a particular 
cell.  This result justified his assumption that all 
“complexions” are equally probable.

Ehrenfest’s and Holm’s work seem to have caught Planck’s attention.
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Planck and the physical structure of Phase space

In a series of three papers submitted in November and December of 1915, Planck generalized his 
treatment to several degrees of freedom

• “hypersurfaces” in multi-dimensional phase space determined  quantum condition and 
the “volume” of finite phase space cells.  

• energies are continuous  (Planck’s “second theory”); average energy within the nth phase 
space cell used to calculate thermal properties, using same partition function technique as 
Ehrenfest (with which Planck was in any case familiar).

In the first paper, “The Quantum Hypothesis for Molecules with Several Degrees of Freedom 
(First Part),” Planck noted

It is characteristic of the quantum hypothesis, in opposition to the classical theory, that the 
elementary domains of probability possess a definite form and size; in particular, their 
boundaries will be defined by certain ( 2f -1) dimensional hypersurfaces.  

Their determination constitutes the most important but also the most difficult part of the 
problem.  The simplest case is the one in which these hypersurfaces are simultaneously the 
surfaces of constant energy...

In this case, the volume of the f dimensional phase space bounded by an energy un is 

1
0

( )
nu u

f
n

u
d d nhφ ψ

=

=
=∫
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coherent and incoherent degrees of freedom
From Edwin P. Adams, Quantum Theory, NRC Bulletin 1920 and 1923

In general, each degree of freedom furnishes one hypersurface; but it often happens that two or 
more degrees of freedom lead to the same hypersurface.  Such degrees of freedom, with common 
hypersurfaces, Planck calls “coherent” degrees of freedom.

Adams, 1920, p. 309

(Planck’s definition is more technical, and involves the details of how one calculates the volume of 
phase space.)  Thus, Planck’s model for hydrogen is an example of a problem displaying coherent 
degrees of freedom.  He did not introduce this terminology until the second paper in the series.
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Planck and the specific heat of hydrogen

The specific heat is just the second derivative.  Planck found correct limiting behavior at high 
and low temperatures. However, the calculations for intermediate temperatures were more 
difficult than for Ehrenfest and Holm:

Unfortunately, the sum does not reduce so simply to a Jacobean theta function...
Planck 1915

Planck took a rigid rotater, with two degrees of freedom, as a simple example.  He applied this 
model to  the specific heat of hydrogen, using the same mathematics as Holm and Ehrenfest

• The average energy within a cell turns out to be.

2
2

2

1

28n

h
u n n

Jπ
⎛ ⎞⎟⎜= + + ⎟⎟⎜⎝ ⎠

• The size of the corresponding phase space cell and the related probability of finding a 
molecule in that cell are.

( ){ } ( )2 2 2 21 2 1nG n n h n h= + − = + 2 1np n= +

Planck calculated the specific heat from the partition function, in a manner similar to Ehrenfest.  
Planck was in any event throughly familiar with this formalism.  He wrote his “thermodynamic 
potential” (the free energy divided by the temperature) in terms of the logarithm of the partition 
function (to which, at this stage, he gave no name and no symbol):

2 1
2( )

0

ln (2 1) n nNk n e σΨ
∞

− + += +∑

He did not do a graph.

2

28
h
JkT

σ
π

=
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By 1916
By 1916, two sets of techniques had been developed for treating 

• systems with several degrees of freedom; and  

• degenerate energy states (several quantum states with the same energy)

action integral ( Sommerfeld and others) 

pdq nh=∫

Paul Epstein and Karl Schwarzschild 
independently treated multiple degrees 
of freedom and degenerate systems:

• Stark effect

• Epstein:  unsuccessful 
model for specific heat of 
hydrogen, based on Bohr 
molecular model

Planck’s “Physical Structure of Phase Space”  

Context:  Planck’s “second theory”

“Surfaces” in multi-dimensional phase space 
defined both quantum conditions and phase 
space cells

Distinguished between

• “coherent” degrees of freedom (several 
degrees of freedom coalesce into one)

• “incoherent” degrees of freedom

The “volume” of a cell in phase space played a 
role similar to that of degenerate states

Planck had applied his theory to the specific 
heat of hydrogen, but had not done a graph.

led to quantized momentum and 
quantized  energy states for several 
degrees of freedom.

Fritz Reiche in Germany, Niels Bohr in Denmark, and Edwin C. Kemple in 
the U.S., applied the new formalism to the specific heat of molecular hydrogen.
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Fritz Reiche (1883–1969)
• Ph.D. with Planck, 1907

• 1908–11:  in Breslau

• 1913:  Privatdocent in Berlin

• 1915–18:  assistant to Planck

• 1919–1920:  advisor to Fritz Haber in the Physical 
Chemistry Institute in Berlin

• 1921–1933:  Professor in Breslau

• 1921: widely read quantum theory textbook

Fritz Reiche was one of the very few 
research pupils of Max Planck ...  He was a 
tiny delicate Jew who combined the typical 
humor of the Berliner with a deep 
melancholy and pessimism.  ...  I learned 
from him a great deal about radiation and 
quantum theory which he had studied at the 
source, in personal contact with Planck.

            --Max Born

1919:  “On the Quantum Theory of the Rotational Heat of Hydrogen”
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immediate context of Reiche 1919

Jan von Weyssenhoff (1916)

One degree of freedom (had completed thesis 
in 1915); specific heat calculation similar to 
Holm; also did paramagnetism based on 
rotator.

Sophie Rotsaijn (1918)

Ph.D. student at Zürich.  Used Planck’s phase 
space theory, but with “incoherent”degrees of 
freedom.  Reasonable agreement with specific 
heat data (see later); did not plot Planck’s 
“coherent” degrees of freedom theory; also 
did paramagnetism.

Paul Epstein (1916)

Used Bohr’s (1913) model of H2 molecule (3 
degrees of freedom), in which moment of 
inertia was not a free parameter; poor 
agreement.

Reiche 1917

Treated paramagnetism using Planck’s phase space 
formalism applied to rigid rotator (spherical 
pendulum).

Used Hamilton-Jacobi formalism to find energies 
of phase space hypersurfaces (same energies are 
quantized energies in Planck’s “first theory.”

Thus, Reiche developed much of formalism he 
used in 1919 in this paper.

These theories of paramagnetism seem not to have 
gone anywhere; Reiche did not so much as 
mention them in his 1921 textbook.

But Reiche’s & Rotsaijn’s treatments were 
mentioned favorable in E. P. Adams, The Quantum 
Theory (NRC 1920; not mentioned in 1923 edition)

Adolf Smekal (1918)

Treated paramagnetism based on Planck’s 
first theory (quantized energies, Hamilton-
Jacobi formalism).

Simon Ratnowski

Privatdocent at Zürich; Ph.D. advisor to both 
Jan von Weyssenthoff (SP?) and Sophie 
Rotszajn.
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Reiche and the specific heat of H2 
• Had first tackled the rigid rotator with two degrees of freedom in 1917 

(paramagnetism)

• Thoroughly explored and clearly explained the theoretical possibilities for calculating 
cR using the quantum theory of 1919

• Worked primarily with Planck’s “first quantum theory”

1.  Calculate energy for 
rotator with two degrees 
of freedom:

( )
1 2

2
2

, 1 2 28n n

h
W n n

Jπ
= +

n1 and n2 are the 
quantum numbers 
associated with two 
rotational degrees of 
freedom

Since in spite of the two degrees of freedom, the 
probability of a state is determined by a single 
quantity (the energy), we have to deal with a 
“degenerate” problem.

Calculations:  Three Steps:
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Reiche’s calculations 
1.   Calculate energy for 

rotator with two degrees 
of freedom:

( )
1 2

2
2

, 1 2 28n n

h
W n n

Jπ
= +

1.   Calculate Q (usually to 
6 terms)

If one writes out the first few terms, it 
becomes evident that 

( )1 2
2

, 1 2

1 2 1 2

/ knnW T n n

n n n n

Q e e σ += =∑∑ ∑∑− −

( )
2

0

2 1 n

n
Q n e σ

∞

=

= +∑ −

2

28
h
JkT

σ
π

=

IF one counts positive and negative 
rotations separately.

( )1 2
2

, 1 2

1 2 1 2

/ knnW T n n

n n n n

Q e e σ += =∑∑ ∑∑− −

“weight,” or number 
of degenerate 
quantum states for a 
given energy
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Reiche’s calculations
1.   Calculate energy for 

rotator with two degrees 
of freedom:

( )
1 2

2
2

, 1 2 28n n

h
W n n

Jπ
= +

1.   Calculate Q (usually to 
six terms) ( )

2

0

2 1 n

n
Q n e σ

∞

=

= +∑ −

3. Calculate the specific heat
( )2

2
2

ln
R

d Q
c Nk

d
σ

σ
σ

=

0  as  0

 as  

R

R

c T

c R T

→ →

→ → ∞

The calculation is difficult.  It is not hard to show that  

The intermediate case is harder, as Planck had already discovered. 
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Reiche’s calculations

( )2
2

2

ln
R

d Q
c Nk

d
σ

σ
σ

=

The calculations become horrendous!

4 5 9 10 13

16 17 25

( ) 3 80 135 567 1344 875

2034 6075 9962

f x x x x x x x

x x x

= + + + + +

+ + + +…
2 4 5 8 9 10

13 16 17 20 25

( ) 1 6 9 10 30 25 14 42

70 18 54 90 148

g x x x x x x x x

x x x x x

= ++ + + + + + +

+ + + + + …

If we let x e σ−=

2 ( )
( )

Rc f x
R g x

σ=

then

where

Reiche used these results to calculate a numerical table:

How did he do the calculations?

2

28
h
JkT

σ
π

=
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Reiche Curve I

Reiche I

Ehrenfest

... müssen wir sie verwerfen.
Reiche, 1919
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What was wrong?

• Perhaps the degeneracy levels are wrong?

• Or perhaps one should investigate other assumptions in calculation of Q?

One might therefore make the hypothesis, that the rotationless state ... does not 
exist, that is, one forbids the quantum state n = n1 + n2 = 0

Zero-point energies thus appear in the context of Planck’s “first theory”!

• Reiche explored four such possibilities, and then investigated Planck’s “second 
theory”!
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Reiche curve III 

Reiche I

Reiche III
no rotation-
free states 
allowed
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Reiche curve V
Consider a possible, if also quite artificial, modification.  It consists therein, that one 
forbids not only the quantum state n = n1 + n2 = 0, but also all states for which n2 = 0

Reiche V

“possible, if also 
quite artificial 
modification”

(same curve as Rotsajn)  This condition places a seemingly arbitrary restriction 
on the plane of rotation.  Reiche does not discuss; but see Tolman, Herzfeld.
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Planck’s Second Theory

Reiche also discussed the predictions of Planck’s “second theory” with two degrees of 
freedom—continuous absorption of energies, but quantized emission.

• “coherent” rotational degrees of freedom lead to an even higher “hump” 
than Reiche’s Curve I (as far as I know, Reiche gave the first published graph 
of Planck’s “coherent” theory)

• “incoherent” degrees of freedom lead to the same result as Reiche’s Curve V 
(as previously shown by Sophie Rotszajn, another student of Simon 
Ratnowsky in Zurich).

The calculations of the specific heat of hydrogen are therefore of no help in determining

... one of the most fundamental questions of the whole quantum theory, 
whether, namely, Plank’s first or second theory is correct.  (Reiche 1921)
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Moments of inertia
This graph from Reiche (1919) shows the effect 
of the moment of inertia.  Reiche and others fit 
these curves to the data by finding a value of J 
that gave good agreement at low temperatures.

Even though J is the only free parameter, the 
different choices of models correspond to 
strikingly different values; for example,

from Reiche 1919:  plot of

J (in gm-cm2)

Einstein-Stern 1.47 × 10-41

Ehrenfest 6.9 × 10-41

Holm 1.36 × 10-41 

Reiche I

Reiche III 2.214 × 10-41

Reiche V 2.293 × 10-41

Planck

Schrödinger (1924) 1.43 to 1.48 × 10-41

By early 1920s, spectroscopic 
measurements began to give 
independent values for J.

2

2/  vs.  1/   where 
8R

h
C R

JkT
σ σ

π
=
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Niels Bohr and the specific heat of hydrogen

Niels Bohr had found the Reiche V result about 3 
years earlier in a paper ALMOST published in 1916

• withdrawn at last moment from the 
Philosophical Magazine

• used quantized energy states

• treated systems with several degrees of free-
dom

• developed, less formally, a theory of phase 
space surfaces similar to Planck’s 1915 theory 
to find “weights”

• Bohr’s theory likewise implied no rotation-
free states!

• led to specific heat identical to that found by 
Reiche in 1919

• Bohr knew about Planck’s 1915 theory, and 
seems to have been the first to make a graph!

Reiche V
Bohr

Planck

On the Application of the Quantum Theory to Periodic Systems
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Niels Bohr and the specific heat of hydrogen

• assumed quantized energy levels

• showed that the volume of phase space for periodic systems with one degree of freedom is 
  

• for systems with more than one degree of freedom, it is not possible ... to obtain a gen-
eral expression for the volume Q limited by such a surface; but from a simple consider-
ation of dimensions it follows that ...

Q nh=

( )rQ C nh= C = constant, r = no. of degrees of freedom
       note similarity to Planck’s result

• By an analogy with classical statistical mechanics, Bohr argued that the probability Pn of a 
system being in the nth quantum state was

1  for two degrees of freedomr
n

dQ
P n n

dn
−∝ = =

note difference 
from Planck

As a result, the probability of a system existing in the n = 0 state is zero.  Bohr observes that

This so-called zero-point energy has here an origin quite distinct from that in Planck’s theory.  
In the present theory it arises simply from the fact that ... there is no probability of a periodic 
system of several degrees of freedom being in the state corresponding to n = 0; or in other 
words, there is no extension in phase corresponding to such a state.

Quite recently, and after the theory given in this section was worked out, Planck has published a 
paper which gives a generalization of his second theory to systems with several degrees of 
freedom ...
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Edwin C. Kemble (1889–1984) 

In October 1917, at a meeting of the American Physical Society, 
Edwin C. Kemble reported his own work—part of his Harvard 
Ph.D. thesis—in which he had also calculated the specific heat 
of hydrogen, taking both degrees of freedom into account.

• specific heat work not published until 1923, in a 
paper written with John Van Vleck, Kemble’s first 
Ph.D. student

• assumed quantized energy states, but found 
“weights” using Planck’s phase-space theory.

• concluded that no rotation-free states could exist.

• primary interest was not specific heat, but rotation-
vibration spectra of diatomic molecules.

In order to bring the theory into complete 
harmony with the observed structure of the infra-
red bands of HCl and at the same time to derive a 
formula ... which would reproduce the observed 
values in the case of hydrogen, it was necessary 
to introduce the zero point hypothesis ... by 
excluding zero from the list of the possible values 
of the energy of rotation

Kemble, 1917
Note high upper temperature range
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Kemble’s specific heat calculations

When Kemble did this work in his 1917 Ph.D. thesis,

• he was familiar with Planck’s 1915 phase space theory; referred to “... Planck’s recent 
extension of the quantum theory to systems having more than one degree of freedom.” 
(p. 2)

• he had not seem Sommerfeld’s theory (Annalen delivery had been interrupted by the war).

Like Reiche, Kemble explored several possible variations:

• Summarized Planck’s theory for two degrees of freedom, and like Bohr, did a graph.

Planck did not plot the specific heat curve to which the above formula 
leads.  The writer has taken the trouble to do so.  ...  The theoretical 
curve is in obvious and complete disagreement with experimental 
values.

• Argued Planck’s second theory couldn’t be right, and therefore only Planck’s first theory 
should be used, but with a zero-point energy. 

• Vibration-rotation spectra led to same conclusions.

Having refuted Planck’s theory, Kemble proceeded to use quantized energy levels, but found the 
weights using Planck’s phase space theory:
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Kemble’s specific heat calculation
1. Kemble calculated the partition function for quantized energies, but assuming no zero point 

energy.  The phase space element above the energy gave the weight.  He found the same partition 
function and specific heat as Reiche I.

2. Then, considered zero point motion (i.e., eliminated n = 0 term).  Now he argued, there was an 
ambiguity in the choice of phase space cell.

... when the zero point hypothesis is introduced it becomes equally plausible to assume 
tht the probability of each condensation surface [i.e., hypersurface] is proportional to 
the volume of the region element just outside it, or the volume of the element just inside 
it, or to the mean volume of the two adjacent region elements. (p. 22)

n

n - 1

n + 1

angle

an
gu

la
r m

om
en

tu
m

The second choice led to an absurd curve.  The first 
and third led to the same results as Reiche III (red) and 
Reiche V (blue).

Kemble found it difficult to decide.
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Kemble’s specific heat calculation
In his thesis, Kemble thought that the 
blue curve (Reiche 5)was the more likely, 
although for the red curve, the 
discrepancy 

... may be explained as the result of the 
vibrational specific heat.  ...  Of course, 
neither of these formulas may prove to 
be correct, but they are so much better 
than [Planck’s] as to afford substantial 
confirmation of the zero-point 
hypothesis.

Then for a while around 1917, thought 
red curve (Reiche 3) preferable—tangled 
thicket

Note:  As a molecule rotates faster

• centrifugal expansion increases moment of inertia, thus shifts rotational energies

• anharmonic potential likewise stretches molecule, increases moment of intertia, at higher vibra-
tional energies

• Both effects could have effect of shifting Reiche’s curve 3 upwards (Kemble and Van Vleck, and 
occasionally others, thought these effects might be important).  

• Both effects also affect molecular spectra—Here, as we shall see, Kendall’s main interest—
molecular spectra—was asserting itself.
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Reiche, Kemble, and Van Vleck
Reiche

• deeply interested in comparing 
models, understanding assumptions

• could models distinguish between first 
and second Planck theories?

• satisfied with rigid rotator model

• seemed perplexed by the need to 
assume that a molecule could not be 
in a rotation-free state (zero-point 
energy)

• took discrepancies with data seriously

...the best still was the curve, number 
five.  But even this was not very good.  
...there was one experimental point 
terribly below, terribly far off.  ... I’m 
pretty sure that ... I asked [Eucken] 
about the reliability of that point.

Reiche, AHQP interview, 1962

Kemble and John Van Vleck

Van Vleck was Kemble’s first Ph.D. student.  
They published a joint paper on hydrogen in 
1923, correcting and extending the results 
of Kemble’s thesis.

• deeply concerned to extend theory to 
high temperatures, and to take 
anharmonic vibrations into account.  

• led, in 1923, to complex (and non-
separable equation for rotator energy.

• In 1923, assumed a zero-point energy 
almost without comment.

• found the agreement of their theory  
(essentially Reiche V) satisfactory.

As I remember, our results gave us a 
specific heat curve that didn't have a hump 
in it.  That was the important thing.  

Kemble, AHQP interview, 1962
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Molecular Spectra
Themes:

• improving experimental techniques for measuring infra-red molecular spectra

• Lord Rayleigh’s prediction (1892):  vibrational absorption spectra should show 
rotation-induced peaks on either side of vibrational peak; should see

• Nernst’s Laboratory again:

• Niels Bjerrum — worked out early quantum theory of molecular absorp-
tion spectra in 1911—14

• Eva von Bahr — first experiments showing evidence of quantized absorp-
tion peaks in HCl (1913)

vib rot vib vib rotν νν ν ν− +

Peaks were interpreted as 
quantized rotational states 
(NOT transitions).

data of Eva von Bahr, 1913 
(in Philosophical Magazine)
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Vibration-rotation data for HCL
Kemble and Brinsmade (1917)

Imes (1919)

• How to explain the gap?

• How to explain the closer 
spacings at higher frequences? 
(same centrifugal and 
anharmonic effects Kemble 
considered in specific heats)

Reiche was primarily interested in 
the first, Kemble with the second.

Both agreed that the gap ⇒ zero 
rotation states were forbidden.

The extreme sensitivity of the 
galvanometer used in this work to the 
slightest mechanical or magnetic 
disturbance is a source of regret.  
Many times it was not possible to 
obtain consistent deflections even 
during the favorable hours, between 
midnight and dawn, chosen for 
observation.

Elmer Imes, Astrophysical Journal, 1919
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Theory:  Before about 1920
Bjerrum interpreted the peaks in von Bahr’s data as representing quantized rotational states 
(that is, radiation corresponding to the rotational frequency of the molecule), NOT transitions 
between states.  So, initially, did Kemble and others.

νvibνvib- 3νrot νvib+νrot νvib+ 2νrot νvib+ 3νrotνvib- 2νrot νvib-νrot

Gap

Kemble (1920) seems to have thought the lines represented rotational states, even though by this time 
he interpreted the vibrational frequency as ΔE/h—that is, the frequency represented the transition 
between states, not the frequency at which the molecule was vibrating!   Schwartzchild in 1916 (see 
Assmus) made a similar distinction between electronic transitions and rotational state.

This picture persuaded Kemble 
and others that Planck’s second 
theory could not be right—the 
peaks meant that rotational states 
must be quantized.

In this interpretation, the gap 
means that rotation-free states 
cannot exist!
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Theory
The theory of vibration-rotation spectra is a moving target around 1920, with several 
threads, and contributions from a number of theorists, including Bjerrum, Kemble, 
Torsten Heurlinger, Wilhelm Lenz, and Adolf Kratzer (student of Sommerfeld). 

Here I describe a thread starting with Reiche and Einstein in 1920 that lead 
(indirectly) to further specific heat calculations by Richard Tolman, Erwin 
Schrödinger, Van Vleck, and others.

Interpretation
(Reiche, 1920)

• Each peak corresponds to the 
absorption of one vibrational 
quantum, and either 
absorption or emission of one 
rotational quantum.

• Selection rule (from 
Correspondence Principle) 
showed rotational state could 
change by only one quantum.

• In this interpretation, the gap 
is a problem.

Gap
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The Gap

Recall that the rotator 
energy is given by

2
2

28m

h
E m

Jπ
=

Energy difference between 
rotational levels is

frequency of rotation-
vibration transition is

There is no gap!  This equation yields equally spaced lines!

( )
2

22
1 2

2

2

1
8

1
0,1,2...

2 4

m m

h
E E m m

J
h

m m
J

π

π

−
⎡ ⎤− = − −⎢ ⎥⎣ ⎦

⎞⎛ ⎟⎜= + =⎟⎜ ⎟⎝ ⎠

2

1
0,1,2...

2 4vib

h
m m

J
ν ν

π
⎞⎛ ⎟⎜= ± + =⎟⎜ ⎟⎝ ⎠

νvib 0→1 1→2 2→31→02→13→2
ν“absorption” notation

The earliest such diagrams I have seen are from 1920 (Reiche and Kratzer).  Notation 
(absorption or emission) is not consistent.
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Reiche and Half-Quanta

labels often given in half-quanta format, for example:  1/2          3/2 

Reiche, after conversations 
with Einstein, proposed instead

Energy difference between 
rotational levels is

frequency of rotation-
vibration transition is

2 2

2

1
2 8m

h
E m

Jπ
⎞⎛ ⎟⎜= + ⎟⎜ ⎟⎝ ⎠

( )

2 2 2

1 2

2

2

3 1
2 2 8

1 0,1,2...
4

m m

h
E E m m

J

h
m m

J

π

π

−

⎡ ⎤⎞ ⎞⎛ ⎛⎟ ⎟⎢ ⎥⎜ ⎜− = + − +⎟ ⎟⎜ ⎜⎟ ⎟⎢ ⎥⎝ ⎝⎠ ⎠⎣ ⎦

= + =

Now there is a gap!  Moreover, there is no possibility of a rotation-free state.

νvib 0→1 1→2 2→31→02→13→2
ν

( ) 2
1 0,1,2...

4vib

h
m m

J
ν ν

π
= ± + =
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Reiche and Half-Quanta
Reiche proposed this solution in 1920, in the Zeitschrift für Physik, after seeing Imes’ HCl 
spectra, and after discussions with Einstein.  (Aside:  Reiche and Einstein apparently got 
to know each other fairly well around this time.)

• Reiche’s suggestion did not catch on. 

• It was succeeded by another suggestion of Adolf Kratzer that avoided the necessity of 
half-quanta.  Sommerfeld adopted it, and Reiche did so himself, in his 1921 text.

• But then, half-quanta were proposed again,  

• by Kratzer in 1922, and 

• by Hendrik Kramers and Wolfgang Pauli in 1923.  

No one remembered Reiche!

Adolph Kratzer:  student of Sommerfeld.  Developed theory of rotation-vibration 
spectra along the same lines as Kemble, in a series of papers starting around 1920.

• And this time, they were applied to the specific heat of hydrogen, initially by Richard 
Chace Tolman in 1923.
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Aside:  Einstein and Reiche

Reiche and Einstein apparently got to know each other fairly well around this time.

When my sister and I were children, we used to play a game which we called Professor, and where 
we acted as the professors.  Each time Einstein visited my father, we used to run to the wastepaper 
basket afterwards and fish out all the thrown-away handwritten notes and papers Einstein and my 
father had prepared.  We used to play with these papers and we would have lengthy discussions 
about them — of course, without having the faintest idea what it was all about.  Once, Einstein 
came into our playroom, saw us sitting on the floor discussing these papers, and heard one of us 
making the remark that all this was not correct and there were some errors in the notes.  Einstein 
listened to our professor-like conversation, asked us to show him the papers, and then said he must 
agree there was something wrong with the writings.  He thanked us for telling him.

He was known to us as Uncle Albert, and we liked him because he always brought a box of chocolate 
for us.

Hans Reiche (1990)
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Aside:  Einstein continued to be interested

Correspondence:

• Einstein to Ehrenfest, 1 
March 1920 (CP 9)

The vanishing of absorption at 
zero is the extraordinary 
thing.  It lends support to the 
argument that, in rotation, the 
permissible motions lie not 
with the quantum numbers n 
but rather with n + 1/2.

• Einstein to Fritz Haber, 6 
October 1920.

But the specific heat function 
of hydrogen as well as the 
Bjerrum spectrum of HCl 
speak for a zero-point energy 
of rotation.
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Adolph Kratzer’s 1920 proposal for the gap

νvib 1→2 2→3 3→41→02→13→2
ν

0→1

The absorption transition in which the molecule absorbs one vibrational quantum, and goes from 
the m = 0 to m = 1 rotational state, does not appear.  But the one in which the molecule falls from 
m = 1 to m = 0 does show up!

No half quanta, and no mention of half quanta (in Zeitschrift für Physik a few months after Reiche).

In order to understand this fact, we may assume that the rotation-free state is by no 
means an impossible state.  The theory of specific heats and the absence of the zero line 
reveal merely that the probability for the existence of the rotation-free state is 
vanishingly small.  On the possibility of the occurrence of the null state will hereby 
nothing be claimed.  This improbable state can rather be produced through external 
influences, but then exists only a very short time ...                                     Kratzer 1920

adopted by Sommerfeld (3rd [1922] ed

This deduction is surprising at first 
sight, and is excellently confirmed by 
the behavior of the specific heat of 
rotation ... of hydrogen

The reverse transition, 1 to 0 absorption, is 
present—a fact very difficult to reconcile with the 
possiblity of thermal equilibrium.  This was an 
annoying difficulty for some time ...

Walter F. Colby (NRC Report, 1926)

Kratzer himself proposed half-quanta in 1922, followed shortly thereafter by ... 
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Kramers-Pauli Theory and half-quanta (1923)
Molecular hydrogen and the hydrogen halides can be described using the rigid rotator (“non-
gyroscopic”—that is, assuming zero angular momentum about the axis of symmetry.

However, it turned out during the 20s that some diatomic molecules (and of course, more complex 
molecules) had to be treated with “gyroscopic” models, in which three rotational degrees of 
freedom were present.

Kramers and Pauli, in a 1923 paper, developed the following model:

from Kemble (NRC) (1926)

m:  rotational angular momentum associated 
with rotation of nuclei about center of 
mass—and thus, perpendicular to the line 
joining the nuclei. 

s:    electronic angular momentum.  The vector 
s is rigidly oriented at a fixed angle to the 
line joining the two nuclei.  Note the 
components  and σ  respectively parallel 
with and perpendicular to the direction of 
m

j:    total angular momentum, quantized in 
integral units

Assumption:  j and s are quantized, m is not.
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Kramers-Pauli Theory (1923)
from Ruark and Urey (1930)

The arrangement of vectors shown in Fig. 18de were 
excluded by Kramers and Pauli, since they are 
dynamically unstable...  They were included by 
Kratzer, however, because they are necessary to 
account for the number of observed energy levels.

Ruark and Urey, 1930

In view of the uncertainty regarding 
the importance of dynamical stability 
for quantized motions this objection 
seems not to be crucial.

Kemble, NRC, 1926
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Kramers-Pauli Theory (1923)

Fig. 18(a) shows the configuration for both HCl and H2.  If one assumes

Then the rotational quantum number and energy are given by

{ }
2

1
2

1 1
2 2 2rot

m j

h
E j

J π

= −

⎛ ⎞⎟⎜= − ⎟⎜ ⎟⎜⎝ ⎠

This [result] would mean that no rotation-free state of the molecule exists.

Kramers and Pauli, 1923

1
,  integer   total angular momentum = 

2 2
h

j j
π

= = ⇒

Ruark and Urey, 1930



69

Richard Tolman and Half-Quanta

and proceeded in much the same 
way as Reiche.

... it should be noted how simply we have 
arrived at the ...a priori probabilities of the 
successive energy levels ... without resorting 
to any artificial rejection of the states of no 
rotation ...

Tolman 1923

Tolman based his argument for half-quanta on 
molecular spectra (citing Kratzer, but not Kramers and 
Pauli), and then turned to the specific heat of hydrogen.

( )21
2

1

2 nQ ne σ
∞

− −= ∑

He started with

Rotational Specific Heat and Half Quantum Numbers
Physical Review 1923
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Tolman’s result for the specific heat

Reiche V

Tolman

• comments that moment of inertia is significant since it is in better agreement with 
the “many lined spectrum of hydrogen” than the Reiche V result.

• suggested that vibrational effects might improve agreement at high temperatures

found moment of inertia to 

be 1.38 × 10-41; compare 

Reiche V: 2.29 × 10-41
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Schrödinger, half-quanta, and moments of inertia

The requirements of the theory are so uncertain that one 
might do better to match the weight ratios to the 
observations as well as possible.

( )21
2

1

n
nQ g e σ

∞
− −= ∑

• In a 1917 review article in Naturwissenschaften, Schrödinger had 
shown some skepticism towards the early theories for the specific 
heat of hydrogen

• He sounded no less skeptical in 1924!

• Like Tolman, Schrödinger used “half-quanta,” and cited 
Kramers and Pauli in the Handbuch article; but he also  
introduced arbitrary weights

1 2 3

1 2 3

: : 1 : 2 : 4     Schrödinger A

: : 4 : 7 : 17   Schrödinger B

g g g

g g g

=

=

On the 
Rotational Heats 
of Hydrogen

Zeitschrift für Physik 1924

Specific Heats 
(theoretical part)
Handbuch der Physik, 1925
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Schrödinger, half-quanta, and moments of inertia

Schrödinger B

Schrödinger A

At room temperature 
the agreement with a 
new measurement of 
Trautz and Hebbel 
(which Herr Eucken 
kindly pointed out to 
me) is satisfactory.
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Schrödinger, half-quanta, and moments of inertia
Why half-quanta?

• He then pointed out that the moment of inertia calculated from his half-quanta the-
ory agreed better with results from electronic band specta of molecular hydrogen 
than did Reiche’s “whole quanta” theory!

Without doubt, better agreement with the 
simple dumbell model [whole quanta]  would 
be attained if one liberalized the choice of 
weights.

Earlier:  vibration-rotation spectra of HCl had reinforced the 
apparent absence of rotation-free states in molecular hydrogen

With Tolman and Schrödinger:  Electronic band spectra of molecular 
hydrogen now began to influence the specific heat theories!

Schrödinger first appealed to the evidence from band spectra:

The approach first introduced into band spectra by Kratzer not only made the absence of 
rotation-free states understandable without special assumptions ...

But as he also said,



74

John Van Vleck and Elmer Hutchisson

John Van Vleck

Late in 1926, Van Vleck and Hutchisson (his first 
Ph.D. student at the University of Minnesota) 
published back-to-back articles in the Physical Review, 
summarizing the theoretical and experimental status of 
the specific heat of hydrogen:

Context:

• considerably more data had been published

• implications of hydrogen band spectra for specific 
heats even more apparent

• quarter quanta?

• new quantum mechanics introduced: “half quanta” fit 
naturally into the new scheme

... the quantum theory has been 
revolutionized by the new mechanics 
developed by Born, Heisenberg, Jordan, and 
Schrödinger.

Van Vleck 1926

Elmer Hutchisson

On the Quantum Theory of the Specific Heat of Hydrogen
Physical Review, 1926

( )
2 2 2

2 2

1 1
1

2 4 8 8
h h

m m m
J Jπ π

⎧ ⎫⎪ ⎪⎞⎛⎪ ⎪⎟⎜ + − = +⎨ ⎬⎟⎜ ⎟⎝ ⎠⎪ ⎪⎪ ⎪⎩ ⎭

half quanta modern QMenergy of a 
rigid rotator
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Van Vleck and Hutchisson

Themes:

• detailed discussion of possible theoretical models, including whole quanta, half quanta, 
“weak” quantization, exclusion of every other state, gyroscopic models, quarter quanta, 
...

• detailed discussion of electronic transitions in hydrogen (which include vibrational and 
rotational levels), implications for moment of intertia.

At any rate the hydrogen secondary spectrum is so complicated and difficult to 
interpret that it does not as yet appear to furnish any conclusive evidence against 
any of the various specific heat curves ...

• discusses nuclear vibration frequency—important in determining importance of vibra-
tional contribution to the specific heat at higher temperatures (puzzling)

• alternately weak and strong band intensities

• absolute entropies and entropy constant (Sakur-Tetrode);—another way of getting at the 
moment of inertia

Existing dissociation data does not appear adequate to warrant any definite 
conclusions ... In short the correlation of experimental and theoretical chemical 
constants is at present in a decidedly chaotic state.

• (Hutchisson)  discussion of the current state of experiment, how well the various 
theories compare with the data.  The calculations were once again involved and 
difficult!
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Van Vleck and Hutchisson
Results

Unfortunately, an impossible specific heat curve is obtained ... from 
the simple theory of the rotator in the new mechanics.
...
The failure of the simple theory is doubtless due to the non-polar 
character of the hydrogen molecule and is probably intimately 
connected with the alternating intensities found in the band spectra 
of certain non-polar molecules.
...
We shall list below several specific ways of crawling out of the 
specfic heat dilemma by assuming more or less empirically a 
different quantization than in the simple polar rotator.  Most of the 
suggestions appear rather artificial and are frankly only conjectures 
...

--Van Vleck 1926

• “whole quanta” are excluded by new quantum theory

• best result:  eliminate from consideration the lowest 
energy state of the quantized rotator (!!)
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Van Vleck and Hutchisson 1926

Hutchisson, Physical Review, 1926
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Van Vleck and Hutchisson 1926

... there is a real discrepancy 
between experiment and 

theory ... between 120o and 

220o.
Hutchisson 1926

... at room temperatures ... it 
is necessary to consider not 
only the the rotational energy 
... but also the vibrational 
energy and the ... expansion 
... due to centrifugal forces

Hutchisson 1926

Most of the suggestions appear rather artificial...   one must at the same time realize 
that observed specific heats furnish fairly definite evidence as to ... a priori 
probabilities and ranges of quantum numbers.  For this reason, it does not appear 
altogether unlikely that the true specific heat curve is of the form ( b) given below.

Van Vleck 1926
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“Astonishing successes”  “Bitter disappointment”

Subsequent developments include:

• Friederich Hund (1927)

• David Dennison (1927) (modern solution)

central:  new value of J from band spectra 

measurements of 4.64 × 10-41— more than 
double Reiche V value, triple Tolman’s.

• experimental work continued through 
1930s (Eucken, Paul Harteck, Karl Clusius, 
others) and included measurements of the 
specific heat of HD and D2

• No fully accurate description of the specific heat of hydrogen ever emerged 
in the old quantum theory.

• The same theory did fairly well in explaining molecular vibration-rotation 
spectra.

• Both specific heats and molecular spectra ⇒ molecules cannot be in 
rotation-free states! 

from Fowler & Guggenheim, 
Statistical Thermodynamics, 1939
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 Theory and Experiment by the late 1920s

modern QM theory
(David Dennison, 
1927)
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Modern Quantum Mechanics
• The energy of a rigid rotator (hydrogen molecule) is given by

( )
2

2
1 , 0,1,2 ...

8n

h
E n n n

Jπ
= + =

where J is the moment of intertia about axis perpendicular to a line joining the 
two H atoms, and passing through the center of mass.

• The two nuclei (protons) are identical fermions (spin 1/2)

• total nuclear spin/rotational wave function must be anti-symmetric

⇒  There are therefore two varieties of molecular hydrogen: 

parahydrogen
 singlet nuclear state (anti-symmetric) ⇔ symmetric rotational state (n even)

orthohydrogen
triplet nuclear state (symmetric) ⇔ antisymmetric rotational state (n odd)

orthohydrogen  ⇔ parahydrogen transition is slow
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Modern Quantum Mechanics
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parahydrogen

To calculate the specific heat of molecular hydrogen:

• Assume H2 molecule is a quantized rotator

• Treat nuclei as identical particles (anti-symetric wave function).

• Result:  hydrogen is a (weakly interacting) mixture of para- and ortho-
hydrogen, in the ratio 1:3  at room temperature.

specific heats of para- and orthohydrogen at low temperatures

orthohydrogen

If one combines these two curves in the ratio 1 part para to 3 parts 
ortho, one obtains a smoothly decreasing curve that agrees well with 
experiment.


	The rotational specific heat of molecular hydrogen
	in the old quantum theory
	“Astonishing successes” “Bitter disappointment”
	--Fritz Reiche, 1921

	Rigid Rotator (Rotating dumbbell)
	Specific heat of H2

	Modern Quantum Mechanics
	Consider a hydrogen molecule (rigid rotator -two degrees of freedom)
	. The two nuclei (protons) are identical fermions (spin 1/2)
	. total nuclear spin/rotational wave function must be anti-symmetric

	ﬁ There are therefore two varieties of molecular hydrogen:
	parahydrogen
	. singlet nuclear state (anti-symmetric) ¤ symmetric rotational state (n even)

	orthohydrogen
	. triplet nuclear state (symmetric) ¤ antisymmetric rotational state (n odd)

	orthohydrogen ¤ parahydrogen transition is slow

	Modern Quantum Mechanics
	parahydrogen

	Theory and Experiment by the late 1920s
	modern QM theory
	(David Dennison, 1927)

	Specific Heat of Hydrogen: Widely investigated in the old quantum theory
	Some of the more prominent physicists and physical chemists who worked on the specific heat of hydrogen.

	Nernst’s Heat Theorem
	Walther Nernst
	1864 - 1941
	. physical chemist
	. studied with Boltzmann
	. 1889: lecturer, then professor at Göttingen
	. 1905: professor at Berlin


	Nernst’s Theorem and Quantum Theory
	. Initially, had nothing to do with quantum theory.
	. Understand the equilibium point of chemical reactions.
	. Nernst’s theorem had implications for specific heats at low temperatures.
	. 1906-1910: Nernst and his students undertook extensive measurements of specific heats of solids at low (down to liquid hydrogen) temperatures.
	“... one gets the impression that the specific heats are converging to zero as required by Einstein’s theory.” (Nernst 1910)
	. Einstein in 1907: If one treated a solid as a collection of quantized harmonic oscillators, the specific heat should go to zero as T Æ 0.
	. As a result, Nernst became an enthusiastic promotor of quantum ideas.


	The specific heat of molecular hydrogen
	. Inititially, Nernt’s Heat Theorem applied only to solids and liquids
	. Early in 1911, Nernst speculated that the rotational (and for diatomic gases, vibrational) degrees of freedom for gases might show quantum behavior.
	. Because of its low mass and low liquification temperature,
	... The determination of the specific heat of hydrogen at low temperatures would therefore be especially interesting. (Nernst 1911)

	Eucken’s Data
	equipartition value

	more data
	1913: Karl Scheel and Wilhelm Hause, working at the Physicalisch-Techniche
	Reichsanstallt just outside Berlin, using the impressive-looking apparatus shown below (“Method of Constant Flow”), measured the specific heat of H2 at three temperatures, as part of a more general program of measuring specific heats of gases.

	data in 1913
	Note two overlapping points

	And Now, The Theory
	Quantum Theory of the Rigid Rotator
	Applied to the specific heat of hydrogen
	Stages
	1. The unquantized rotator: Nernst, Einstein, and Otto Stern, 1911-1913
	2. Quantized rotators with one degree of freedom: Lorentz, Paul Ehrenfest, Erik Holm, others; 1913-1916 or so
	3. Quantized rotators with two degrees of freedom: Max Planck, Fritz Reiche, Edwin C. Kemble, Niels Bohr, others; 1915-1925
	Molecular spectra became increasingly important
	. First, vibration-rotation spectra (e.g., HCl)
	. Later, vibration/rotation transitions in electronic spectra of H2 (extremely complex, with thousands of lines); allowed for the independent measurement of the moment of inertia


	4. Modern quantum mechanics: John Van Vleck, Friedrich Hund, David Dennison, others; 1926 on


	Nernst, February 1911
	“Towards a theory of specific heats and on the application of the doctrine of energy quanta to physical chemical questions in general”
	Zeitschrift für Electrochemie, 1911


	Nernst and specific heats: February 1911
	Nernst reviewed his results for the specific heats of solids; but the 1911 paper is as much about gases as about solids.
	Nernst began by pointing out problems with equipartition in monatomic and diatomic gases:
	. monatomic gases: no rotational degrees of freedom. The theory furnishes not even a clue ...
	. diatomic gases: value 5/2 R is ok for most gases, but halogens have considerably higher values, and the specific heats of all gases increase at higher temperatures.

	The theory can account for a new degree of freedom, as in the oscillation of an atom around its equilibrium position, but the gradual emergence of a new degree of freedom is (without new arbitrary assumptions) entirely senseless.

	Nernst and specific heats: February 1911
	Since we at first disregard the quantum theory and make the assumption, that the kinetic energy of the Schwingungskreise project...
	That distribution turns out to be the Maxwell-Boltzmann velocity (not speed) distribution. Nernst applies the Maxwell-Boltzmann ...


	Nernst and specific heats: February 1911
	We have seen above, that a departure from the laws of statistical mechanics then emerges, if one concerns oneself with the rotat...

	Nernst and specific heats: February 1911
	Through this chain of reasoning, Nernst writes the following results:

	First Solvay Conference (Nov 1911): Nernst
	At the first Solvay Conference in November 1911, Nernst repeated his February derivation of Einstein’s specific heat result, but said comparatively little about gases.
	. “Schwingungskreis” did draw some fire-how e.g. can energy be decomposed into components (Lorentz)?; led to discussion of multiple degrees of freedom
	. Nernst did refer to his February paper, but otherwise made only a few brief allusions to the specific heats of gases.
	. In the discussion after his talk, in an exchange with Poincaré, Nernst did say:

	The variable frequency n [of rotation] is determined by the rotational energy and the dimensions of the molecule. The difficulties that stand here in the way of the application of quantum theory are very substantial.

	First Solvay Conference: Einstein
	Einstein devoted a short section to the rigid rotator in his talk:
	. several letters suggest an earlier interest in this problem, and in talk, he said

	I tried to solve this problem, but did not succeed because of mathematical difficulties.
	. Then, adopted a sanitized version of Nernst’s model:

	If, with Nernst, we assume for the sake of simplicity that all molecules of the diatomic gas being considered have a definite an...

	First Solvay Conference: Einstein
	Einstein said nothing about Nernst’s conceptual framework, nor about how he was interpreting these equations.

	First Solvay Conference: Lorentz
	Einstein and Otto Stern, 1913
	Einstein and Stern, 1913
	zero-point energy

	Einstein and Stern: Results
	Zero-point energy

	Theory: Quantizing the rigid rotator
	Paul Ehrenfest, 1913
	It is at any rate worth pointing out, that the snuggling up [Anschmiegen] [of a specific heat curve] to the horizontal axis at T = 0, to infinitely high order, may be produced entirely without the introduction of a zero-point energy.

	Ehrenfest’s calculation of the specific heat
	1. Calculate energy of a rotator: Ehrenfest, following Lorentz, quantized the rotators

	Ehrenfest’s calculation of the specific heat
	1. Calculate energy of a rotator:
	2. Calculate the dependence of the specific heat on temperature:

	Ehrenfest’s calculation of the specific heat
	1. Calculate energy of a rotator:
	2. Calculate the dependence of the specific heat on temperature:
	3. Take into account both rotational degrees of freedom:
	The sum Q and the specific heat are not easy to calculate (series converges slowly for large s ); Ehrenfest used a Jacobian theta function to get around this problem. He found ...


	Ehrenfest’s result
	Specific heat (cal/mole-K) vs absolute Temperature

	Erik Holm and Planck’s Second Theory
	Ehrenfest
	(Planck I)

	Planck and the physical structure of Phase space
	Planck and the physical structure of Phase space
	In a series of three papers submitted in November and December of 1915, Planck generalized his treatment to several degrees of freedom
	. “hypersurfaces” in multi-dimensional phase space determined quantum condition and the “volume” of finite phase space cells.


	coherent and incoherent degrees of freedom
	From Edwin P. Adams, Quantum Theory, NRC Bulletin 1920 and 1923
	In general, each degree of freedom furnishes one hypersurface; but it often happens that two or more degrees of freedom lead to the same hypersurface. Such degrees of freedom, with common hypersurfaces, Planck calls “coherent” degrees of freedom.
	Adams, 1920, p. 309
	(Planck’s definition is more technical, and involves the details of how one calculates the volume of phase space.) Thus, Planck’...


	Planck and the specific heat of hydrogen
	The specific heat is just the second derivative. Planck found correct limiting behavior at high and low temperatures. However, the calculations for intermediate temperatures were more difficult than for Ehrenfest and Holm:

	By 1916
	By 1916, two sets of techniques had been developed for treating
	. systems with several degrees of freedom; and
	. degenerate energy states (several quantum states with the same energy)


	Fritz Reiche (1883-1969)
	. Ph.D. with Planck, 1907
	. 1908-11: in Breslau
	. 1913: Privatdocent in Berlin
	. 1915-18: assistant to Planck
	. 1919-1920: advisor to Fritz Haber in the Physical Chemistry Institute in Berlin
	. 1921-1933: Professor in Breslau
	. 1921: widely read quantum theory textbook
	Fritz Reiche was one of the very few research pupils of Max Planck ... He was a tiny delicate Jew who combined the typical humor...
	--Max Born

	immediate context of Reiche 1919
	Jan von Weyssenhoff (1916)
	One degree of freedom (had completed thesis in 1915); specific heat calculation similar to Holm; also did paramagnetism based on rotator.

	Reiche and the specific heat of H2
	1. Calculate energy for rotator with two degrees of freedom:

	Reiche’s calculations
	1. Calculate energy for rotator with two degrees of freedom:

	Reiche’s calculations
	1. Calculate energy for rotator with two degrees of freedom:

	Reiche’s calculations
	The calculations become horrendous!

	Reiche Curve I
	Reiche I

	What was wrong?
	. Perhaps the degeneracy levels are wrong?
	. Or perhaps one should investigate other assumptions in calculation of Q?
	One might therefore make the hypothesis, that the rotationless state ... does not exist, that is, one forbids the quantum state n = n1 + n2 = 0
	Zero-point energies thus appear in the context of Planck’s “first theory”!
	. Reiche explored four such possibilities, and then investigated Planck’s “second theory”!


	Reiche curve III
	Reiche I

	Reiche curve V
	Consider a possible, if also quite artificial, modification. It consists therein, that one forbids not only the quantum state n = n1 + n2 = 0, but also all states for which n2 = 0

	Planck’s Second Theory
	Reiche also discussed the predictions of Planck’s “second theory” with two degrees of freedom-continuous absorption of energies, but quantized emission.
	. “coherent” rotational degrees of freedom lead to an even higher “hump” than Reiche’s Curve I (as far as I know, Reiche gave the first published graph of Planck’s “coherent” theory)
	. “incoherent” degrees of freedom lead to the same result as Reiche’s Curve V (as previously shown by Sophie Rotszajn, another student of Simon Ratnowsky in Zurich).

	The calculations of the specific heat of hydrogen are therefore of no help in determining
	... one of the most fundamental questions of the whole quantum theory, whether, namely, Plank’s first or second theory is correct. (Reiche 1921)

	Moments of inertia
	This graph from Reiche (1919) shows the effect of the moment of inertia. Reiche and others fit these curves to the data by finding a value of J that gave good agreement at low temperatures.
	Even though J is the only free parameter, the different choices of models correspond to strikingly different values; for example,

	Niels Bohr and the specific heat of hydrogen
	Niels Bohr had found the Reiche V result about 3 years earlier in a paper ALMOST published in 1916
	. withdrawn at last moment from the Philosophical Magazine
	. used quantized energy states
	. treated systems with several degrees of freedom
	. developed, less formally, a theory of phase space surfaces similar to Planck’s 1915 theory to find “weights”
	. Bohr’s theory likewise implied no rotation- free states!
	. led to specific heat identical to that found by Reiche in 1919
	. Bohr knew about Planck’s 1915 theory, and seems to have been the first to make a graph!


	Niels Bohr and the specific heat of hydrogen
	. assumed quantized energy levels
	. showed that the volume of phase space for periodic systems with one degree of freedom is
	. for systems with more than one degree of freedom, it is not possible ... to obtain a general expression for the volume Q limited by such a surface; but from a simple consideration of dimensions it follows that ...

	Edwin C. Kemble (1889-1984)
	In October 1917, at a meeting of the American Physical Society, Edwin C. Kemble reported his own work-part of his Harvard Ph.D. thesis-in which he had also calculated the specific heat of hydrogen, taking both degrees of freedom into account.
	. specific heat work not published until 1923, in a paper written with John Van Vleck, Kemble’s first Ph.D. student
	. assumed quantized energy states, but found “weights” using Planck’s phase-space theory.
	. concluded that no rotation-free states could exist.
	. primary interest was not specific heat, but rotation- vibration spectra of diatomic molecules.


	Kemble’s specific heat calculations
	When Kemble did this work in his 1917 Ph.D. thesis,
	. he was familiar with Planck’s 1915 phase space theory; referred to “... Planck’s recent extension of the quantum theory to systems having more than one degree of freedom.” (p. 2)
	. he had not seem Sommerfeld’s theory (Annalen delivery had been interrupted by the war).

	Like Reiche, Kemble explored several possible variations:
	. Summarized Planck’s theory for two degrees of freedom, and like Bohr, did a graph.

	Planck did not plot the specific heat curve to which the above formula leads. The writer has taken the trouble to do so. ... The theoretical curve is in obvious and complete disagreement with experimental values.
	. Argued Planck’s second theory couldn’t be right, and therefore only Planck’s first theory should be used, but with a zero-point energy.
	. Vibration-rotation spectra led to same conclusions.
	Having refuted Planck’s theory, Kemble proceeded to use quantized energy levels, but found the weights using Planck’s phase space theory:


	Kemble’s specific heat calculation
	1. Kemble calculated the partition function for quantized energies, but assuming no zero point energy. The phase space element above the energy gave the weight. He found the same partition function and specific heat as Reiche I.
	2. Then, considered zero point motion (i.e., eliminated n = 0 term). Now he argued, there was an ambiguity in the choice of phase space cell.
	... when the zero point hypothesis is introduced it becomes equally plausible to assume tht the probability of each condensation...


	Kemble’s specific heat calculation
	In his thesis, Kemble thought that the blue curve (Reiche 5)was the more likely, although for the red curve, the discrepancy
	... may be explained as the result of the vibrational specific heat. ... Of course, neither of these formulas may prove to be correct, but they are so much better than [Planck’s] as to afford substantial confirmation of the zero-point hypothesis.
	Then for a while around 1917, thought red curve (Reiche 3) preferable-tangled thicket


	Reiche, Kemble, and Van Vleck
	Reiche
	. deeply interested in comparing models, understanding assumptions
	. could models distinguish between first and second Planck theories?
	. satisfied with rigid rotator model
	. seemed perplexed by the need to assume that a molecule could not be in a rotation-free state (zero-point energy)
	. took discrepancies with data seriously

	...the best still was the curve, number five. But even this was not very good. ...there was one experimental point terribly below, terribly far off. ... I’m pretty sure that ... I asked [Eucken] about the reliability of that point.
	Reiche, AHQP interview, 1962

	Molecular Spectra
	Themes:
	. improving experimental techniques for measuring infra-red molecular spectra
	. Lord Rayleigh’s prediction (1892): vibrational absorption spectra should show rotation-induced peaks on either side of vibrational peak; should see
	. Nernst’s Laboratory again:
	. Niels Bjerrum - worked out early quantum theory of molecular absorption spectra in 1911-14
	. Eva von Bahr - first experiments showing evidence of quantized absorption peaks in HCl (1913)



	Vibration-rotation data for HCL
	Kemble and Brinsmade (1917)

	Theory: Before about 1920
	Bjerrum interpreted the peaks in von Bahr’s data as representing quantized rotational states (that is, radiation corresponding to the rotational frequency of the molecule), NOT transitions between states. So, initially, did Kemble and others.

	Theory
	The theory of vibration-rotation spectra is a moving target around 1920, with several threads, and contributions from a number of theorists, including Bjerrum, Kemble, Torsten Heurlinger, Wilhelm Lenz, and Adolf Kratzer (student of Sommerfeld).
	Here I describe a thread starting with Reiche and Einstein in 1920 that lead (indirectly) to further specific heat calculations by Richard Tolman, Erwin Schrödinger, Van Vleck, and others.

	The Gap
	Recall that the rotator energy is given by

	Reiche and Half-Quanta
	labels often given in half-quanta format, for example: 1/2 3/2

	Reiche and Half-Quanta
	Reiche proposed this solution in 1920, in the Zeitschrift für Physik, after seeing Imes’ HCl spectra, and after discussions with Einstein. (Aside: Reiche and Einstein apparently got to know each other fairly well around this time.)
	. Reiche’s suggestion did not catch on.
	. It was succeeded by another suggestion of Adolf Kratzer that avoided the necessity of half-quanta. Sommerfeld adopted it, and Reiche did so himself, in his 1921 text.
	. But then, half-quanta were proposed again,
	. by Kratzer in 1922, and
	. by Hendrik Kramers and Wolfgang Pauli in 1923.


	No one remembered Reiche!
	Adolph Kratzer: student of Sommerfeld. Developed theory of rotation-vibration spectra along the same lines as Kemble, in a series of papers starting around 1920.
	. And this time, they were applied to the specific heat of hydrogen, initially by Richard Chace Tolman in 1923.


	Aside: Einstein and Reiche
	Reiche and Einstein apparently got to know each other fairly well around this time.

	Aside: Einstein continued to be interested
	Correspondence:
	. Einstein to Ehrenfest, 1 March 1920 (CP 9)

	The vanishing of absorption at zero is the extraordinary thing. It lends support to the argument that, in rotation, the permissible motions lie not with the quantum numbers n but rather with n + 1/2.
	. Einstein to Fritz Haber, 6 October 1920.

	But the specific heat function of hydrogen as well as the Bjerrum spectrum of HCl speak for a zero-point energy of rotation.

	Adolph Kratzer’s 1920 proposal for the gap
	The absorption transition in which the molecule absorbs one vibrational quantum, and goes from the m = 0 to m = 1 rotational state, does not appear. But the one in which the molecule falls from m = 1 to m = 0 does show up!

	Kramers-Pauli Theory and half-quanta (1923)
	Molecular hydrogen and the hydrogen halides can be described using the rigid rotator (“non- gyroscopic”-that is, assuming zero angular momentum about the axis of symmetry.
	However, it turned out during the 20s that some diatomic molecules (and of course, more complex molecules) had to be treated with “gyroscopic” models, in which three rotational degrees of freedom were present.
	Kramers and Pauli, in a 1923 paper, developed the following model:

	Kramers-Pauli Theory (1923)
	from Ruark and Urey (1930)

	Kramers-Pauli Theory (1923)
	Fig. 18(a) shows the configuration for both HCl and H2. If one assumes

	Richard Tolman and Half-Quanta
	and proceeded in much the same way as Reiche.

	Tolman’s result for the specific heat
	Reiche V

	Schrödinger, half-quanta, and moments of inertia
	The requirements of the theory are so uncertain that one might do better to match the weight ratios to the observations as well as possible.

	Schrödinger, half-quanta, and moments of inertia
	Schrödinger B

	Schrödinger, half-quanta, and moments of inertia
	Why half-quanta?

	John Van Vleck and Elmer Hutchisson
	John Van Vleck

	Van Vleck and Hutchisson
	Themes:
	. detailed discussion of possible theoretical models, including whole quanta, half quanta, “weak” quantization, exclusion of every other state, gyroscopic models, quarter quanta, ...
	. detailed discussion of electronic transitions in hydrogen (which include vibrational and rotational levels), implications for moment of intertia.

	At any rate the hydrogen secondary spectrum is so complicated and difficult to interpret that it does not as yet appear to furnish any conclusive evidence against any of the various specific heat curves ...
	. discusses nuclear vibration frequency-important in determining importance of vibrational contribution to the specific heat at higher temperatures (puzzling)
	. alternately weak and strong band intensities
	. absolute entropies and entropy constant (Sakur-Tetrode);-another way of getting at the moment of inertia

	Existing dissociation data does not appear adequate to warrant any definite conclusions ... In short the correlation of experimental and theoretical chemical constants is at present in a decidedly chaotic state.
	. (Hutchisson) discussion of the current state of experiment, how well the various theories compare with the data. The calculations were once again involved and difficult!


	Van Vleck and Hutchisson
	Results

	Van Vleck and Hutchisson 1926
	Hutchisson, Physical Review, 1926

	Van Vleck and Hutchisson 1926
	... there is a real discrepancy between experiment and theory ... between 120o and 220o.
	Hutchisson 1926

	“Astonishing successes” “Bitter disappointment”
	Subsequent developments include:
	. Friederich Hund (1927)
	. David Dennison (1927) (modern solution)

	central: new value of J from band spectra measurements of 4.64 ¥ 10-41- more than double Reiche V value, triple Tolman’s.
	. experimental work continued through 1930s (Eucken, Paul Harteck, Karl Clusius, others) and included measurements of the specific heat of HD and D2
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