K(z,z')= 2ikoe”‘0|z—"|

and therefore Eq. (29).

(B11)

“Permanent address: Department of Physics, California State University at
Fullerton, Fullerton, CA 92634,

Ip, P. Ewald, On the Foundations of Crystal Optics (Air Force Cambridge
Research Laboratories Report AFCRL-70-0580, Cambridge, MA, 1970).
This is a translation by L. M. Hollingsworth of Ewald’s 1912 Dissertation
at the University of Munich.

2C. W. Oseen, ““Uber die Wechselwirkung zwischen zwei elektischen Di-
polen der Polarisationsebene in Kristallen und Flussigkeiten,”” Ann. Phys.
48, 1-56 (1915).

3L. Rosenfeld, Theory of Electrons (North-Holland, Amsterdam, 1951), p.
105.

‘M. Lax, ‘“‘Multiple Scattering of Waves. II. The Effective Field in Dense
Systems,”” Phys. Rev. 85, 621-629 (1952).

M. Born and E. Wolf, Principles of Optics, (Pergamon, Oxford, 1970), 4th
ed., p. 102. Compare with the discussion in the fifth edition (1975), p. 102.

Y. Weisskopf, ‘“How light interacts with matter,”” in Lasers and Light,
Readings from Scientific American (W. H. Freeman, San Francisco, 1969),
p. 21.

7]. D. Jackson, Classical Electrodynamics (Wiley, New York, 1975), 2nd
ed. p. 513.

8). J. Sein, ‘‘An integral-equation formulation of the optics of spatially
dispersive media,”” Ph.D. Thesis, Department of Physics, New York Uni-
versity, 1969; ‘A Note on the Ewald-Oseen Extinction Theorem,”” Opt.
Commun. 2, 170-172 (1970).

°D. N. Pattanayak and E. Wolf, ‘‘General form and a new interpretation of
the Ewald-Oseen extinction theorem,”’ Opt. Commun. 6, 217-220 (1972).
See also E. Wolf, ‘‘Electromagnetic Scattering as a Non-Local Boundary
Value Problem,”’ in Symposia Mathematica (Academic, London and New
York, 1976), Vol. XVIII, pp. 333-352.

195 Van Kranendonk and J. E. Sipe, *‘Foundations of the macroscopic elec-
tromagnetic theory of dielectric media,”” in Progress in Optics, edited by
E. Wolf (North-Holland, Amsterdam, 1977), Vol. XV, p. 321.

1y, M. Stone, Radiation and Optics (McGraw-Hill, New York, 1963), p.
340.

2B Wolf, “A generalized extinction theorem and its role in scattering

theory,”” in Coherence and Quantum Optics, edited by L. Mandel and E.
Wolf (Plenum, New York, 1973), pp. 339--357.

3The analog of the extinction theorem in potential scattering problems in
quantum mechanics has been discussed in detail in the following papers:
D. N. Pattanayak and E. Wolf, ‘‘Scattering states and bound states as
solutions of the Schrodinger equation with nonlocal boundary condi-
tions,”” Phys. Rev. D 13, 913-923 (1976) and D. N. Pattanayak and E.
Wolf, ‘““‘Resonance states as solutions of the Schrodinger equation with a
nonlocal boundary condition,”” Phys. Rev. D 13, 2287-2290 (1976).

YSee, for instance, Ref. 7, pp. 147-148.

5See, for instance, Ref. 7, pp. 153-155.

For a related discussion see L. L. Foldy, ‘““The multiple scattering of
waves,”’ Phys. Rev. 67, 107-119 (1945).

17E. Lalor and E. Wolf, ‘‘Exact solution of the equations of molecular optics
for reflection and refraction of an electromagnetic wave on a semi-infinite
dielectric,”” J. Opt. Soc. Am. 62, 1165-1174 (1972).

18gee, for instance, Ref. 7, p. 395.

19Gee, for instance, R. P. Feynman, R. B. Leighton, and M. Sands, The
Feynman Lectures on Physics (Addison-Wesley, Reading, MA, 1963),
Vol. I, p. 30-11.

We have not included explicitly any local field correction. As in the ex-
ample of Sec. I, a local field correction does not affect the final results.
ZWe assume V-E=0, which is consistent with the assumption made later

that E can be approximated by a plane wave.

2Gee, for instance, P. W. Milonni and J. H. Eberly, Lasers (Wiley, New
York, 1988), Sec. 14.4.

Bgee, for instance, L. D. Landau and E. M. Lifshitz, Quantum Mechanics
(Pergamon, Oxford, 1977), 3rd ed. Sec. 131.

A somewhat similar approach was used to explain the refractive index of
a dielectric in the following paper: M. B. James and D. J. Griffiths, ‘“Why
the speed of light is reduced in a transparent medium,”’ Am. J. Phys. 60,
309-313 (1992).

BSee Ref. 19, p. 31-2.

g, P. Wigner, “‘Lower limit for the energy derivative of the scattering
phase shift,”” Phys. Rev. 98, 145-147 (1955).

27F. Goos and H. Hanchen, “‘Ein neuer und fundamentales Versuch zur total
reflexion,”” Ann. Phys. 6, 333-345 (1947); 251-252 (1949).

28M. Sargent, M. O. Scully, and W. E. Lamb, Jr., Laser Physics (Addison-
Wesley, Reading, MA, 1977).

Specific heats and the equipartition law in introductory textbooks

Clayton A. Gearhart

Department of Physics, St. John’s University, Collegeville, Minnesota 56321
(Received 7 September 1995; accepted 31 January 1996)

A majority of introductory calculus-based physics textbooks, including many widely used ones, give
misleading or incorrect explanations for the failure of the equipartition law to describe correctly the
classically expected rotational degrees of freedom in monatomic and diatomic gases. This article

outlines typical textbook treatments and reviews the quantum mechanical explanation.

American Association of Physics Teachers.

1. INTRODUCTION

The law of equipartition of energy is a rigorous conse-
quence of classical mechanics. It states that for any mechani-
cal system, each degree of freedom described by a quadratic
term in the energy makes an average contribution to the en-
ergy of 3T, where T is the absolute temperature and & is
Boltzmann’s constant.! Nevertheless, as is well-known, mea-
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surements of the specific heats of common monatomic and
diatomic gases are not consistent with the equipartition law.
This conflict between theory and experiment was not re-
solved until the development of quantum mechanics.

Most calculus-based introductory physics textbooks intro-
duce the equipartition law and relate it to the specific heats of
gases. It is an ideal place in introductory physics courses to
point out a clear and obvious failure of classical physics that
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requires quantum mechanics for its resolution. Consequently,
it is disappointing to discover that out of some 27 introduc-
tory textbooks surveyed, including many widely used ones,
only six correctly describe the predlctlons of classical equi-
partition and the reasons for its failure.? The rest either do
not discuss the topic, or (the large majority) give explana-
tions that are at best misleading and at worst, out-and-out
mistaken. In the following sections I will describe this situ-
ation in more detail. Section II reviews the predictions of
equipartition for ideal gases. Section IIT describes typical
textbook explanations that are misleading or incorrect. Sec-
tion IV outlines the quantum mechanical reasons for the fail-
ure of equipartition. In Sec. V, I offer a few speculations on
what might underlie this widespread problem in introductory
texts.

II. EQUIPARTITION AND THE SPECIFIC HEATS
OF GASES

Consider a monatomic ideal gas, thought of as a collection
of “‘rigid bodies’’ of finite size. Each atom in such a gas has
six degrees of freedom, three translational, and three rota-
tional. Classically, each degree of freedom should have as-
sociated with it an average energy of 3kT, so that the total
internal energy per molecule U should be 3k7T. Diatomic
molecules should likewise have three translational and three
rotational degrees of freedom. For both, the predicted spe-
cific heats at constant volume and constant pressure are

Cv—d—T=3k

cp=c,tk=4k. 1)
These values yield a ratio of specific heats

4
Lt s 2

This theoretical prediction is of course in wild disagree-
ment with experiment. The measured value of y for mon-
atomic gases such as mercury or the noble gases is about 5/3,
and for diatomic gases such as oxygen or nitrogen, about 7/5.
These measured values correspond respectively to three and
five degrees of freedom. It thus appears that monatomic
gases have only three translational degrees of freedom; the
expected rotational degrees of freedom are missing. Simi-
larly, diatomic molecules apparently have three translational
and two rotational degrees of freedom; one rotational degree
of freedom is missing, corresponding to rotation about a line
joining the two atoms.

A second failure of classical equipartition for diatomic
molecules involves two missing vibrational degrees of free-
dom, corresponding to the potential and kinetic energies of
vibrations along a line joining the two atoms. These degrees
of freedom do show up at high temperatures (and at lower
temperatures in heavier diatomic gases), when the ratio y
falls to a limiting value of about 9/7.

These discrepancies caused widespread bewilderment
among the nineteenth physicists who tried to reconcile them
with classical mechanics. Maxwell in 1875 said that they
constituted ‘‘the greatest difficulty yet encountered by the
molecular theory.”” * Lord Kelvin went so far as to question
the validity of the equipartition law.* Boltzmann, con31der1ng
only rotation, suggested that molecules might be ‘‘smooth”’
(that is, friction-free), so that collisions could not alter rota-
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tional energies about axes of symmetry. Hence such rota-
tional motions would not affect specific heats.’> As we now
know, no reconciliation is possible: The discrepancies are
quantum mechanical in origin. They signal the failure not
only of classical equipartition, but of classical mechanics it-
self.

III. TEXTBOOK EXPLANATIONS

A few textbooks give clear, correct explanations for the
failure of equipartition in ideal gases. One particularly thor-
ough discussion reads as follows:

Although the equipartition theorem has had spectacular

successes in explaining the measured heat capacities of

gases and solids, it has had equally spectacular failures.

If a diatomic gas molecule rotates about the line joining

the atoms, there should be an additional degree of free-

dom. Similarly, if a diatomic molecule is not rigid, the
two atoms should vibrate along the line joining them.

We would then have two more degrees of freedom cor-

responding to kinetic and potential energies of vibra-

tion. According to the measured values of the molar
heat capacities..., however, diatomic gases apparently
do not rotate about the line joining them nor do they
vibrate. The equipartition theorem gives no explanation
for this, nor for the fact that monatomic atoms appar-
ently do not rotate about any of the three possible per-

pendicular axes in space... .

The equipartition theorem fails because classical me-

chanics itself breaks down when applied to atomic and

molecular systems and must be replaced by quantum
mechanics.®

Of the 27 books I examined, five others state correctly, if
often in less detail, that some rotational degrees of freedom
are missing and that quantum mechamcs is needed to explain
this failure of the equipartition law.” The remaining 21 text-
books fall into the following categories.

(i) Five texts argue that since the moment of inertia /
about a line joining the two atoms of a diatomic molecule is
“very small”’ or ‘‘negligible,’” there will be no contribution
to the energy from this degree of freedom.

This argument is simply wrong. There is no corollary to
the equipartition law that says the average energy per degree
of freedom is kT unless the moment of inertia is (in some
sense) ‘‘small”’! If the eqlulpartltlon law were true, there
would be a contribution of 3k7 to the internal energy for any
finite /. None of these texts places this explanation in a quan-
tum context, where it might have at least some justification
(see Sec. IV).

(ii) Eight texts explicitly assume that the atoms in a gas
molecule are mass points; that is, they have no extension. In
that case, the moment of inertia about any axis passing
through the atom is zero, and hence there can be no contri-
bution to the energy from rotation about such an axis.

This explanation is formally correct: If atoms were point
masses, then these rotational degrees of freedom could not
be present. But the premise is wrong: atoms are not point
masses! Why, then, can this model be used? Why does it
give a correct result? These texts don’t say. Certainly they
say nothing about a quantum explanation. One purpose of a
physical model is to simplify a problem while preserving the
essential physics. This model, by contrast, makes an assump-
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tion that in this context is unphysical: Molecules are not
point masses, and classically, should rotate. Far from clari-
fying the physics, this explanation tries to define an evident
problem out of existence.

(iii) One popular text, which appeared in multiple editions
over many years, is difficult to classify: One edition from the
1960s gives a clear and correct discussion of the missing
rotational degrees of freedom, along the lines of Ref. 6
above. Earlier and later editions omit this section, and for the
most part offer no explanation at all. The most recent edi-
tions state (briefly and a little mysteriously) that in ‘‘ordi-
nary”’ collisions, there is no way for rotational motion about
an axis of symmetry to change. This account may be a latter-
day version of Boltzmann’s argument, or possibly an am-
biguous reference to the quantized symmetric top (see be-
low). It is at best obscure.

(iv) Seven books do not call attention to, much less ex-
plain, the missing rotational degrees of freedom. Most of
these discussions are brief; some do not even mention equi-
partition or the concept of degrees of freedom. They do not
mislead students except by omission, but they do neglect a
marvelous opportunity to point out the limitations of classi-
cal physics and the need for quantum mechanics. One excep-
tion, from the 1950s, gives a detailed and sophisticated ac-
count of equipartition and its quantum limitations that puts
most others to shame; but it does not bring up the possibility
of rotation about an axis of symmetry, stating only that mol-
ecules can be thought of as ‘‘smooth spheres’’—another pos-
sible reference to Boltzmann’s model.

Only a handful of these 21 books point out that one must
also explain the absence of rotational degrees of freedom in
monatomic gases; the discussion focuses almost entirely on
diatomic gas molecules.

Physicists often disagree on how best to present physics to
beginning students, and differences of approach abound both
in textbooks and in discussions around department coffee
pots! Out-and-out mistakes in textbooks are far less com-
mon. The arguments described above are puzzling for a more
specific reason: Many textbooks that discuss equipartition
also point out that a diatomic molecule can be thought of as
two masses connected by a spring. The potential and kinetic
energies connected with this vibrational motion lead to two
additional degrees of freedom, predicted by classical equi-
partition, that do not show up at room temperature. But in
striking contrast to the rotational case, most texts treat the
vibrational modes correctly: They point out the failure of
classical equipartition, and most go on to explain that at
higher temperatures, where the energy level spacings become
small compared to kT, the additional vibrational degrees of
freedom do indeed show up in the specific heats. Many texts
also point out that the two rotational degrees of freedom in
diatomic molecules can be ‘‘frozen out” at low temperatures
because of quantum effects. It is only in the discussion of
rotation about axes through the center of mass of a mon-
atomic molecule, and rotation about an axis joining the two
atoms of a diatomic molecule, that textbooks so often resort
to incorrect or misleading explanations. Only a handful state
clearly that the absence of these classically expected degrees
of freedom is likewise quantum mechanical in origin.
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IV. QUANTUM MECHANICS AND MOLECULAR
ROTATION

A. The symmetric rotator

A full quantum mechanical treatment of atomic and mo-
lecular rotations is neither trivial nor particularly well known
to many physicists. A first step might be to think of both
monatomic and diatomic gas molecules as quantized rigid
bodies capable of rotation.® To be sure, the quantum me-
chanical “‘rigid rotator,”” which assumes a molecule consist-
ing of two point masses separated by a distance d, is a stan-
dard textbook problem, frequently encountered in quantum
mechanics and statistical mechanics texts. The treatment is
straightforward; one finds that the eigenfunctions are spheri-
cal harmonics, and that the energy eigenvalues are given by

A2 I(1+1)

2 I
where I is the moment of inertia about the center of mass.
This system has two rotational degrees of freedom, and
therefore, as is easﬂy shown, contrlbutes 2(3T)=kT to the
internal energy in the classical limit.’ Many intermediate and
advanced quantum mechanics and statistical mechanics texts
use the rigid rotator to describe diatomic molecules; few of
them explain why one can make the assumption of point
masses.

By contrast, the quantum mechanical ‘‘symmetric rota-
tor,”” which assumes masses of finite size, is not a standard
textbook problem (although, interestingly, it was one of the
earliest systems to receive a detailed quantum mechanical
treatment).'® One typically sees it today in physical chemis-
try or molecular spectroscopy texts. One also sees it in older
texts such as Pauling and Wilson’s Introductzon to Quantum
Mechanics and Fowler’s Statistical Mechanics.!! 1t is often
introduced only in discussions of polyatomic molecules,
since, as should be evident, the rigid rotator happens to give
a perfectly correct result for diatomic molecules.

Moreover, the symmetric rotator is less straightforward
mathematically. One must write a Hamiltonian in an Euler
angle coordinate system, and the resulting Schrodinger
Equation eigenfunctions involve hypergeometric functions.
For a symmetric rotator, let /. be a doubly degenerate mo-
ment of inertia (for a diatomic molecule, the moments of
inertia about mutually perpendicular axes through the center
of mass, and perpendicular to the line joining the two mol-
ecules); and let I, (<<I, in this case) be the moment of
inertia about the axis of symmetry (for a diatomic molecule,
the line joining the two masses). Then the energy eigenval-

ues are given by
A2r? ( 1 )

1=012,..., 3

A2 1(1+1)
Em=5 71—+ |71
2 I, 2 \I, I
where the first term corresponds to rotations about two axes
perpendicular to and passing through the center of mass, and
the second to rotations about the axis of symmetry. The
wave function t,,; is described by nonnegative integral
quantum numbers /, m, and J, which correspond respectively
to rotations about the center of mass, the z axis of the fixed
coordmate system, and the axis of symmetry of the rigid
body.?

If one takes the classical limit of this system, one finds
three rotational degrees of freedom and a contribution of kT
to the specific heat, both for the case considered above
(1.>1,) and for the completely symmetric case (a threefold

4
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degenerate I_) corresponding to a spherically symmetric
monatomic gas molecule.”® This classical limit, however,
does not apply to rotations about a line joining the two atoms
of a diatomic molecule at room temperature. An order of
magnitude calculation for a typical diatomic molecule such
as oxygen shows that for the first term in Eq. (4), the lowest
excited state has an energy of a few times 107 eV, corre-
sponding to a temperature of a few K. By contrast, the lowest
excited state for the second term has an energy of roughly
0.1 MeV, corresponding to a temperature of about 10° k.1
Hence, at room temperature, the two degrees of freedom cor-
responding to the first term in Eq. (4) each contribute the 3kT
predicted by classical equipartition. The second term, by
contrast, is ‘‘frozen out,”” and contributes nothing to the in-
ternal energy. It is for this reason that the point mass rigid
rotator with its two rotational degrees of freedom turns out to
give a correct result.

Similar considerations apply to the rotational degrees of
freedom for monatomic gases. In this case, the spherical
symmetry of the gas molecule (J,=1I_) causes the second
term in Eq. (4) to vanish. Thus the energy is the same as for
the mass point rigid rotator [Eq. (3)]. Nevertheless, because
the degeneracy of the wave functions is different from that of
the rigid rotator, the classical limit for the symmetric spheri-
cal rotator (/;=1_) turns out to yield three rotational degrees
of freedom."> As in the case of the diatomic molecule, the
small moment of inertia (in this case, about an axis through
the center of the atom) causes the first excited state to be at
an energy much greater than can be excited at room tempera-
ture.

One needs to be explicit about the role of symmetry in this
model. As we will see below, for reasons not apparent in the
preceding discussion, quantum mechanics prohibits the rota-
tion of systems with full (continuous) spherical or axial sym-
metry, irrespective of the energy levels. By contrast, rota-
tions of polyatomic molecules with a two- or threefold
degenerate moment of inertia but with only n-fold rotational
symmetry about an axis, are not so restricted. Most textbook
discussions of the symmetric rotator do not emphasize this
point.

B. Adequacy of the ‘‘symmetric rotator’’ model

Some intermediate and advanced texts, particularly older
ones, give the above treatment as an explanation for the
failure of classical equipartition.'® Nevertheless, it is not en-
tirely adequate. In particular, an atom or molecule is a com-
plex many-body quantum mechanical system. It is far from
obvious that it can be treated as a rigid body, even a quantum
mechanical one. How can we justify modeling either a
monatomic or a diatomic gas molecule as a symmetric
rotator?

We must first ask precisely what is rotating! It is apparent
that the electrons cannot participate in any collective rota-
tional mode corresponding to the ‘‘rigid body’’ rotation of
the molecule as a whole about an axis of symmetry. If one
considers a very simple system—the electronic states of a
hydrogen atom—it is apparent that no rotational energy lev-
els of the form

hZ
J(J+1) T

are possible. If there were any such energy levels, they
would appear in the solutions to the Schrodinger equation!
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Now in a multielectron atom or molecule, it is in principle
possible that a suitable approximation would turn up a col-
lective mode that would appear as a rotational energy spec-
trum. However, any approximate separation of a Hamil-
tonian into single electronic states on the one hand, and
collective rotational states on the other, would have to rely
on something like a Born—Oppenheimer approximation,
which requires that rotational energy levels be very different
in magnitude from single electronic states. But a rough esti-
mate of the moment of inertia of an orbital electron about the
molecular axis of symmetry shows that the rotational ener-
gies are on the order of eV—about the same as typical elec-
tronic energy states in atoms and diatomic molecules. It
therefore appears that one cannot interpret atomic or molecu-
lar electronic excited states in terms of collective ‘‘rigid
body”’ rotation.!” (Note, of course, that these electronic
states, however regarded, typically have energies >>kT at
room temperature and so cannot contribute to the specific
heat.'®)

Molecular rotations are thus due to nuclear motion.'® Con-
sider first the two degrees of freedom corresponding to the
“tumbling’’ of a diatomic gas molecule about two perpen-
dicular axes through the center of mass of the molecule. The
nuclear mass far exceeds the electron mass, and hence the
energies of any nuclear motions are much less than the elec-
tronic energies. Here the conditions necessary for the Born—
Oppenheimer approximation hold: The electronic energy
levels are on the order of eV, the vibrational levels are on the
order of 0.1 eV, and the rotational levels are on the order of
103 eV. Moreover, the rotational energies are much less
than kT~0.025 eV corresponding to room temperatures, and
so the equipartition law should apply.?

Rotations of diatomic molecules about a line joining the
two atoms, and rotations of nuclei in monatomic atoms, are
more complex. First, it is evident that there is no coupling
between the two nuclei of a diatomic molecule. Thus, al-
though either nucleus might conceivably rotate indepen-
dently, there can be no collective rotational modes akin to
the rigid body rotation of a ‘‘dumbbell’” around an axis pass-
ing through the center of both nuclei.

Atomic nuclei, of course, are no more rigid bodies than
are atoms or molecules. Nevertheless, collective *‘rigid
body’’ modes that lead to nuclear rotational spectra do exist,
just as they do for molecular spectra.21 In principle, there-
fore, one might expect three rotational degrees of freedom
for monatomic gas molecules such as mercury or the noble
gases, corresponding to nuclear rotations about three mutu-
ally perpendicular axes through the center of the nucleus.
These degrees of freedom do not show up for two reasons.
First, as argued above, the lowest excited rotational energy
state for such systems is on the order of 0.1 MeV, far greater
than &7, and so the equipartition law could not apply.

A second, more fundamental argument, stemming from
the symmetry of the wave function, provides yet another
reason not to expect nuclear rotations about axes of symme-
try. Consider a wave function ¢ that is spherically symmet-
ric. By a well-known theorem in quantum mechanics, such a
state must have zero angular momentum. Similar consider-
ations apply to systems that are axially symmetric. This
theorem certainly applies to wave functions describing
collective ‘‘rigid body’’ motion. Hence for spherically or
axially symmetric nuclei, there can be no collective rotation
about axes of symmetry.? In particular, a symmetric rotator
model can describe the rotational states of a spherically or
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axially symmetric ‘‘rigid body’’; but all allowable wave
functions for such systems must correspond to zero angular
momentum about a symmetry axis [J=0 in Eq. (4)].2 Thus,
a spherical nucleus cannot rotate. Similarly, by this theorem,
a football-shaped nucleus would have only two rotational
degrees of freedom, not the three predicted by classical
physics.

As it happens, most if not all common monatomic (and
diatomic) gases have spherically symmetric nuclei, and
hence cannot rotate.?* For gas molecules with nonspherically
symmetric nuclei, the high excitation energies described
above would prevent the appearance of rotational degrees of
freedom.

V. CONCLUSION

We are faced with a puzzling situation: Why is it that so
many introductory texts, including many of the most widely
used ones, give such a misleading account of molecular ro-
tations? We are missing an outstanding opportunity to point
out to students a striking and elementary example of the
failure of classical mechanics. We also are discouraging
critical thinking by students: It is remarkable, in my own
experience, how rarely students ask why a degree of freedom
should not appear simply because its corresponding moment
of inertia is in some sense ‘‘small,”” or why we can treat
atoms as point masses even though we know they are no
such thing. Indeed, the authority of the textbook is so great
that when these objections are raised, students often actively
resist the suggestion than the text might be wrong or incom-
plete!

I can think of at least three reasons why this state of affairs
has persisted:

(i) The quantum explanation for the failure of equiparti-
tion is remarkably complex. Moreover, it is likely that most
physicists do not in the course of their training routinely
encounter the physics that underlies the failure of equiparti-
tion for rotations in monatomic and diatomic gases. On one
level, the symmetric rotator (unlike the rigid rotator) is not a
standard problem in most intermediate and advanced quan-
tum mechanics and statistical mechanics texts. On a second
level, a quantum explanation that goes beyond the symmetric
rotator involves knowing something of the quantum mechan-
ics of molecular and nuclear rotational spectra. Even among
specialists, the usefulness of this quantum mechanical de-
scription lies in its ability to explain these spectra. Not sur-
prisingly, texts in molecular or nuclear physics rarely if ever
mention how this material applies to the failure of equipar-
tition for rotational degrees of freedom. It is not one of the
problems they are interested in!

(i) Since the advent of quantum mechanics, the predic-
tions of the equipartition law for the specific heats of gases
no longer have the status of a mysterious and pressing prob-
lem requiring explanation. Some older kinetic theory and
statistical mechanics textbooks such as those by Jeans or
Fowler clearly remember the challenge that had been posed
by the failure of equipartition, and make a point of showing
how it can be resolved.” More recent texts give much less
space to this topic. Often, these texts adopt the rigid rotator
(with its implicit assumption of point masses) as a model for
a diatomic molecule with little or no explanation. Some sta-
tistical mechanics texts do not discuss diatomic molecules at
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all. For this reason as well, many physicists never see, as a
part of their undergraduate or graduate education, a careful
discussion of the implications of the equipartition theorem
for the specific heats of gases—it is no longer a particularly
interesting or pressing topic, and there is no shortage of pos-
sible substitutes.

(ili) Perhaps most central is the influence of what we
might term a ‘‘textbook culture.”’ Incorrect and misleading
explanations for the failure of equipartition in introductory
texts have a long history. The majority of the 27 texts exam-
ined here have been published since 1980. But two, both
widely used in their day, date from the 1930s, and a number
of others are from the 1950s through the 1970s. All but one
of these older texts either give no explanation for the failure
of equipartition, or give incorrect or misleading explanations
similar to those in more recent books. The degree to which
our introductory textbooks follow similar patterns in the or-
ganization and presentation of material is noteworthy. This
organization is to a considerable extent arbitrary and
conventional.’® It may be that we retain it, at least in part,
merely because as a profession we are comfortable with it,
and because both authors and publishers are reluctant to risk
challenging established patterns.”’ And of course, it is easy
for both authors and physics instructors to overlook difficul-
ties with long-established and familiar explanations. The re-
sult, in this case, is that as a teaching community we have
never settled on a correct and widely accepted account.

Whatever the reasons, it appears that many otherwise first-
rate textbooks offer explanations for the failure of equiparti-
tion to describe the rotational degrees of freedom in
monatomic and diatomic gases that are misleading or simply
wrong. It would be desirable for both textbook authors
and physics instructors to reconsider their approach to this
topic.

!See for example F. Reif, Fundamentals of Statistical and Thermal Physics
(McGraw-Hill, New York, 1965), pp. 248ff.

2Arguably, the number giving correct explanations is only five. A sixth
gave a correct explanation in a footnote (in small print), after having given
an incorrect explanation in the text! (See Ref. 27, below.) The textbooks
are Marcelo Alonso and Edward J. Finn, Physics (Addison-Wesley, Read-
ing, MA, 1970); Harris Benson, University Physics (Wiley, New York,
1991); Frederick J. Bueche, Introduction to Physics for Scientists and
Engineers (McGraw-Hill, New York, 1986); Robert M. Eisberg and
Lawrence S. Lemer, Physics (McGraw-Hill, New York, 1981); Paul M.
Fishbane, Stephen Gasiorwicz, and Stephen T. Thornton, Physics for Sci-
entists and Engineers (Prentice-Hall, Englewood Cliffs, NI, 1993);
Michael Ference, Jr., Harvey B. Lemon, and Reginald J. Stephenson, Ana-
Iytical Experimental Physics (University of Chicago, Chicago, 1956);
Kenneth W. Ford, Classical and Modern Physics (Xerox College, Lexing-
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Hornyak, and Ford, Ref. 2) use a suitably simplified form of this symmetry
argument to explain the absence of rotations about axes of symmetry.

“Sec Ref. 16.
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DATA ADJUSTMENTS

If one knows the answer, there is a natural tendency to keep on making these corrections until
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mers of the 1919 eclipse expedition were accused of bias in throwing out the data from one of the
photographic plates that would have been in conflict with Einstein’s prediction, a result they
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